CCS and Power Systems

Crosscutting Research - University Training and Research

Study of Particle Rotation Effect in Gas-Solid Flows Using Direct Numerical Simulation with a Lattice Boltzmann Method

Project No: FE0007520

Project Description

The project team will use the DNS method to investigate the drag force between solid particles and gas phases. The advanced Lattice Boltzmann Method (LBM) will be used to carry out simulations for microscopic model systems in which the particle surface is directly resolved. The immersed boundary (IB) technique will be included in the LBM to accurately represent particle shapes in the simulation, allowing for straightforward accounting of poly-dispersed and non-spherical particles. Effects of particle rotation and of hydrodynamic interactions and direct contacts between particles will be included in the simulation. Particle motion and forces will be recorded and compared to experimental results obtained using high-speed particle imaging methods developed at NETL. The particle-fluid drag force data acquired from fine-scale simulations will be used to generate a database to help formulate an improved drag correlation that explicitly includes information on microstructures of particles and fluid flows as well as particle and fluid properties. Finally, the new drag correlation will be tested in the NETL open source multiphase gas solids flow and reactions simulation software MFIX (Multiphase Flow with Interphase eXchanges) by comparing simulation results using the new drag correlation with simulation results using existing drag models, and comparing the simulation results with published experimental data. The project team will also conduct studies to compare the new model with other traditional drag models to predict gas-solid flow interactions at mesoscopic scales.

Project Details