CCS and Power Systems

Carbon Capture - Post-Combustion Capture

Slipstream Pilot-Scale Demonstration of a Novel Amine Based Post-Combustion Process Technology for CO2 Capture from Coal-Fired Power Plant Flue Gas

Project No: FE0007453

Project Description

Linde LLC (Linde) and partners will design, build, and operate a 1 megawatt electric (MWe) equivalent pilot plant at a PC plant host site to further refine a post-combustion capture solvent technology developed by Linde and BASF incorporating BASF’s novel amine-based process along with Linde’s process and engineering innovations. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirements using novel solvents that are stable under coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based post-combustion capture technology.

A techno-economic assessment will be performed for a conceptual 550 MWe coal-fired power plant incorporating the amine-based post-combustion CO2 capture technology in development. Results from previous bench-scale and small pilot testing will be analyzed and design optimization studies will be performed to select the slipstream pilot plant design basis. The basic design will be completed with sufficiently detailed engineering to accurately estimate the cost of the slipstream pilot implementation. The techno-economic analysis and the slipstream pilot plant cost estimates will be used to confirm project feasibility and progression to the next stage.

Based on completed detailed engineering studies and design development for the system, the pilot plant will be constructed, installed, and commissioned to operate on a slipstream of coalfired flue gas. The National Carbon Capture Center (NCCC) in Wilsonville, Alabama, will be the host site for the slipstream pilot plant. Parametric testing will be conducted to confirm that the pilot plant meets the performance targets and to obtain appropriate design information. A detailed data analysis will be performed to assess and develop the design basis for scale-up. The pilot plant will be operated continuously under stable conditions to confirm the solvent stability and key material compatibility. The long-term test results will be used to update the techno-economic study and develop a commercialization plan for this technology.

Project Details