CCS and Power Systems

Advanced Energy Systems - Hydrogen Turbines

Effects of Hot Streak & Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

Performer: Ohio State University Research Foundation

Project No: FE0007156

Project Description

The particulate deposition model developed by The Ohio State University (OSU) in prior University Turbine Systems Research (UTSR) work will be modified to better account for the fundamental physics of particle impact and sticking, including particle and surface properties. Experimental data from OSU's Turbine Reacting Flow Facility (TuRFR) deposition cascade facility will be used to validate the revised model.

The TuRFR facility will be modified to provide for the generation of inlet temperature profile non-uniformities (hot streaks), which will be tracked through the turbine nozzle passage using surface temperature infrared imagery and exit plane temperature measurements. Hot streak evolution and the effect of the hot streaks on deposition will be evaluated. Film cooling will then be added to both the experiments and the computation to evaluate its effect on hot streak migration and deposition. Finally, the model's ability to track hot streak migration will be exercised on a full turbine stage (vane and rotor) using data acquired in the OSU Gas Turbine Laboratory transient turbine test rig. The model will also be used to predict deposition in the rotating configuration, although there will be no experimental validation of deposition in the rotating frame.

OSU turbine reacting flow rig (TuRFR) showing upper and lower sections assembled.

OSU turbine reacting flow rig (TuRFR) showing upper and lower sections assembled.

Project Details