CCS and Power Systems

Carbon Capture - Post-Combustion Capture

Recovery Act: Slipstream Testing of a Membrane CO2 Capture Process for Existing Coal-Fired Power Plants

Performer: Membrane Technology & Research Inc.

Project No: FE0005795

Project Description

Membrane Technology and Research (MTR) and partners will demonstrate a cost-effective membrane process to separate CO2 from coal-fired power plant flue gas at pilot-scale and will evaluate its potential in an industrial application. Membrane-based flue gas CO2 separation technologies offer a number of advantages, including low energy use, tolerance to wet acid gases, small footprint, recovery of flue gas water, and—as they use only electric power—no modifications to the existing boiler and steam turbine. However, due to the low partial pressure of CO2 in flue gas, membranebased processes require a large membrane area for separation. The MTR innovative membrane design addresses this problem by utilizing two key innovations: high CO2 permeance membranes and a countercurrent sweep module design. MTR’s PolarisTM membranes have ten times the CO2 permeance of conventional gas separation membranes, which leads to a tenfold decrease in the required membrane area and reduces the capital cost and footprint of the captu re system substantially. The counter-current sweep module design utilizes an existing air stream to generate a driving force for CO2 capture, reducing the need for compressors or vacuum pumps. These innovations allow the membrane process to capture CO2 from flue gas with substantial cost reductions.

In a previous DOE project, MTR demonstrated bench-scale performance of their high permeance CO2 membranes with flue gas mixtures and the effective operation of countercurrent sweep modules. Field work, at a 0.05 MWe level, was performed to test 8-inch diameter modules with small slipstreams of flue gas from gas and coal-fired power plants. This project will demonstrate a 1 MWe membrane system using full-scale membrane components (12-inch diameter modules) on a slipstream of coal-fired power plant flue gas.

Project Details