CCS and Power Systems

Advanced Energy Systems - Hydrogen Turbines


Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls


Performer: University of Texas at Austin

Project No: FE0005540


Project Description

Wind tunnel facilities at The Pennsylvania State University (Penn State) and University of Texas at Austin (UT) have been specifically designed to simulate film cooling of turbine vanes, blades, and endwalls. These facilities incorporate equipment that simulates the deposition of contaminants in the turbine by using molten wax particles to simulate the molten contaminant particles that occur at actual engine conditions. The wax particles used in the test facilities are sized appropriately to simulate the inertial behavior of particles that exist in engine conditions. The use of wax also allows for the simulation of the liquid-to-solid phase change that is essential to the primary deposition mechanism.

UT will be focusing on the performance of shallow trench film cooling configurations for various positions on the suction and pressure sides of a simulated vane with active deposition. Meanwhile, Penn State will be investigating the effect of active deposition on various endwall cooling configurations. Preliminary results show that deposition could be simulated dynamically using wax and that the effects of deposition could be quantified using infrared thermography. New endwall and vane surface film cooling configurations will be developed to minimize deposition and maximize cooling performance under contaminated conditions.

The combined cooling effects of TBC (Thermal Barrier Coating) and film cooling are shown
in the distributions of overall cooling effectiveness, f, presented here for no TBC,
moderate thickness TBC, and thick TBC.


Project Details