ARRA Research

Geologic Sequestration Training and Research (GSTR) -


Recovery Act: Actualistic and Geomechanical Modeling of Reservoir Rock, CO2 and Formation Flue Interaction, Citronelle Field, Alabama


Performer: University of Alabama

Project No: FE0002225


Program Background and Project Benefits

Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions intothe atmosphere without adversely influencing energy use or hindering economic growth.
Deploying these technologies in commercial-scale applications requires a significantlyexpanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activitiesare needed to develop a future generation of geologists, scientists, and engineers whopossess the skills required for implementing and deploying CCUS technologies.
The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL),through funding provided by the American Recovery and Reinvestment Act (ARRA) of 2009, manages 43 projects that received more than $12.7 million in funding. The focus ofthese projects has been to conduct geologic storage training and support fundamentalresearch projects for graduate and undergraduate students throughout the UnitedStates. These projects include such critical topics as simulation and risk assessment;monitoring, verification, and accounting (MVA); geological related analytical tools;methods to interpret geophysical models; well completion and integrity for longterm CO2 storage; and CO2 capture

Overall the results of the project will make a vital contribution to the scientific, technical, and institutional knowledge base needed to establish frameworks for the development of commercial-scale CCUS. The results of this research are expected to provide technological advancements in modeling and predicting the behavior of rock-fluid interactions of CO2 storage reservoirs as well as understanding efficiency of storage operations, particularly in combined CO2 storage/enhanced oil recovery projects. Additionally, the project is helping to train students in the skills and competencies that will be required from a workforce needed to implement CCUS technologies on a commercial-scale.


Project Details