ARRA Research

Geologic Sequestration Training and Research (GSTR) -

Recovery Act: Actualistic and Geomechanical Modeling of Reservoir Rock, CO2 and Formation Flue Interaction, Citronelle Field, Alabama

Performer: University of Alabama

Project No: FE0002225

Project Description

NETL has partnered with the West Virginia University (WVU) to conduct a threeyearstudy of the Citronelle field located in Mobile County, Alabama, to determine the diagenetic (physical, chemical, and biological) alteration of reservoir rock and formation fluid properties due to injection of supercritical CO2 into mature, conventional hydrocarbon reservoirs. The study is using comprehensive geochemical assessments of core and formation fluid from the Citronelle field to test a reactive transport model for prediction of supercritical CO2-fluid-rock interactions. This modeling can be used to predict dissolution and/or mineral trapping in the reservoir rock and guide engineering, assessment of storage capacity, development, and monitoring of CO2 storage sites.
The Citronelle oil field (Figure 1) is an ideal site for CO2 storage because of its geology and the pre-existing CO2 infrastructure in the region. The Citronelle field is currently the focus of an on-going CO2-enhanced oil recovery (EOR) project led by the University of Alabama and NETL. CO2-EOR has been viewed as the most promising near term approach for CO2 storage, due to the economic return from extracted oil. Thus, this study is highly relevant to emerging technologies. Also, a state-of-the-art geologic model of the Rodessa Formation reservoir, a major oil and gas reservoir in the eastern Mississippi Interior Salt Basin and promising EOR target, has been created as aresult of the on-going CO2-EOR DOE project.

Project Details