CCS and Power Systems

Carbon Storage - Geologic Storage Technologies and Simulation and Risk Assessment


Simulation of Coupled Processes of Flow, Transport and Storage of CO2 in Saline Aquifers


Performer: Colorado School of Mines

Project No: FE0000988


Program Background and Project Benefits

Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2 ) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2 , with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets for geologically storing CO2 . Computer simulation can be used to estimate CO2 plume and pressure movement within the storage formation as well as aid in determining safe operational parameters; results from computer simulations can be used to refine and update a given site’s MVA plan. Risk assessment research focuses on identifying and quantifying potential risks to humans and the environment associated with geologic storage of CO2, and helping to ensure that these risks remain low.

As carbon capture, utilization, and storage (CCUS) capacity increases and projects become commercial beyond 2020, the importance of accurate geologic models and robust risk assessment protocols will become increasingly important to project developers, regulators, and other stakeholders. NETL’s Carbon Storage Program aims to continue improvements to the models and risk assessment protocols. Specific goals within the Simulation and Risk Assessment Focus Area that will enable the Carbon Storage Program to meet current programmatic goals are to (1) validate and improve existing simulation codes which will enhance the prediction and accuracy of CO2 movement in deep geologic formations to within ± 30 percent accuracy, (2) validate risk assessment process models using results from large-scale storage projects to develop risk assessment profiles for specific projects, and (3) develop basin-scale models to support the management of pressure, CO2 plume, and saline plume impacts from multiple injections for long-term stewardship in major basins of the United States.

As carbon capture, utilization, and storage (CCUS) capacity increases and projects become commercial beyond 2020, the importance of accurate geologic models and robust risk assessment protocols will become increasingly important to project developers, regulators, and other stakeholders. NETL’s Carbon Storage Program aims to continue improvements to the models and risk assessment protocols. Specific goals within the Simulation and Risk Assessment Focus Area that will enable the Carbon Storage Program to meet current programmatic goals are to (1) validate and improve existing simulation codes which will enhance the prediction and accuracy of CO2 movement in deep geologic formations to within ± 30 percent accuracy, (2) validate risk assessment process models using results from large-scale storage projects to develop risk assessment profiles for specific projects, and (3) develop basin-scale models to support the management of pressure, CO2 plume, and saline plume impacts from multiple injections for long-term stewardship in major basins of the United States.


Project Details