CCS and Power Systems

Carbon Storage - Regional Carbon Sequestration Partnerships/Injection Projects

Plains CO2 Reduction Partnership (PCORP) Phase II and Phase III

Performer: University of North Dakota

Project No: FC26-05NT42592

Program Background and Project Benefits

The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states and four Canadian provinces, and are developing the framework needed to validate geologic carbon storage technologies. The RCSPs are unique in that each one is determining which of the numerous geologic carbon storage approaches are best suited for their specific regions of the country and are also identifying regulatory and infrastructure requirements needed for future commercial deployment. The RCSP Initiative is being implemented in three phases, the Characterization Phase, Validation Phase, and Development Phase. In September 2003, the Characterization Phase began with the seven partnerships working to determine the locations of CO2 sources and to assess suitable locations for CO2 storage. The Validation Phase (2005–2012) focused on evaluating promising CO2 storage opportunities through a series of small-scale field projects in the seven partnership regions. Finally, the Development Phase (2008-2020+) activities are proceeding and will continue evaluating how CO2 capture, transportation, injection, and storage can be achieved safely, permanently, and economically at large scales. These field projects are providing tremendous insight regarding injectivity, capacity, and containment of CO2 in the various geologic formations identified by the partnerships. Results and assessments from these efforts will assist commercialization efforts for future carbon  storage projects in North America.

The Plains CO2 Reduction (PCOR) Partnership, led by the University of North Dakota’s Energy & Environmental Research Center (EERC), includes all or part of the states of Iowa, Minnesota, Missouri, Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming and the Canadian provinces of Alberta, British Columbia, Manitoba, and Saskatchewan. The PCOR Partnership has received support from more than 100 organizations. The nine states in the PCOR Partnership account for about 11 percent of total U.S. CO2 emissions from stationary sources. Regional characterization activities conducted by the PCOR Partnership confirmed that while numerous large stationary CO2 sources are present, the region also has tremendous potential for CO2 storage. The varying natures of the sources and storage sites reflect the geographic and socioeconomic diversity across this nearly 1.4 million mi2 area of central North America. The region offers significant potential for storage in deep saline formations (both carbonate and clastic formations), unmineable coal seams, and depleted oil and natural gas fields. Of particular interest to this region of the U.S. is the optimization of CO2 for geologic storage in tandem with enhanced oil recovery (EOR).

The PCOR Partnership region, which covers over 1.4 million square miles, emits approximately 562 million metric tons of CO2 yearly from large stationary sources in the region. Research through the PCOR Partnership Development Phase projects can be used to ensure that geologic storage is not just an option for the distant future, but can be implemented on a large scale for both environmental and commercial reasons. Overall, based on the current geological formations characterized, the PCOR Partnership region has the storage resource of 313 billion metric tons of CO2 in saline formations, 3.2 billion metric tons in depleted oil fields, and 7.3 billion metric tons in unmineable coal seams, which is over four times the anticipated regional emissions over the next 100 years, assuming a static emission profile.

The integrated approach at the Bell Creek Oil Field helps meet the commonsense safety expectations of local landowners and communities. Further, by storing anthropogenic CO2 at the Bell Creek Oil Field, Denbury benefits the environment by offsetting the carbon footprint of its regional oil field operation. The results of the Bell Creek project will help future projects effectively implement a proven CO2 MVA system as part of a comprehensive approach to subsurface CO2 management, utilizing it for regional EOR operations.

While providing a substantial reduction in CO2 emissions, the Fort Nelson project will also facilitate the development of significant shale gas reserves in the Horn River Basin to provide North American markets with clean natural gas. Research aspects of the effort are being designed to provide proof of concept for geologic CO2 storage in deep saline formations, particularly for co-storage with sour gas, and serve as a model for follow-on CCS projects using geologic CO2 management at other gas-processing facilities in the region and around the world.

Goals and Objectives

The primary objective of the DOE’s Carbon Storage Program is to develop technologies to safely and permanently store CO2 and reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth. The programmatic goals of Carbon Storage research are to (1) develop and validate technologies to ensure 99 percent storage permanence; (2) develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness; (3) support industry’s ability to predict CO2 storage capacity in geologic formations to within 30 percent; and (4) develop Best Practices Manuals (BPMs) for monitoring, verification, accounting, and assessment; site screening, selection, and initial characterization; public outreach, well management activities, and risk analysis and simulation.

The PCOR Partnership’s overall goal is to validate the information and technology developed under the Characterization and Validation Phases relative to research and field activities, public outreach efforts, and regional characterization. Specific objectives include the following:

  • Conduct a successful Bell Creek large-scale injection to verify and validate the concept of utilizing the region’s many oil fields for large-scale injection of anthropogenic CO2, resulting safe long-term storage of CO2 while producing incremental oil volumes.

  • Conduct a successful Fort Nelson large-scale feasibility study and to ultimately provide risk management and MVA support for the injection to verify and validate the concept of utilizing the region’s carbonate saline formations for large-scale injection and storage of anthropogenic CO2.

  • Establish MVA methods to safely and effectively monitor commercial-scale simultaneous CO2 EOR and CO2 storage projects.

  • Utilize the commercial practices as the backbone of the MVA strategy and augment with additional cost-effective techniques.

  • Share lessons learned for the benefit of similar projects across the region.

  • Establish the relationship between the CO2 EOR process and long-term storage of CO2.

  • Verify and validate the technical and economic feasibility of using brine-saturated carbonate formations for large-scale CO2 injection.

  • Gather characterization data that will verify the ability of the target formations to meet the goal of storing 50 percent of the region’s point source CO2 emissions for the next 100 years.

  • Advance the regulatory and permitting framework.

  • Demonstrate that robust MVA of a brine-saturated CO2 storage project can be conducted cost-effectively.

  • Develop methods to provide the technical information needed to monetize carbon credits for CO2 stored in geologic formations.

  • Meet or exceed the expectations of the members of the PCOR Partnership by developing project(s) that are commercially successful.

Project Details