DOE/NETL Methane Hydrate Projects
Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization Last Reviewed 11/27/2015


The goal of this research is to assess the contemporary state of the upper continental slope along U.S. coastal margins to determine if gas hydrates are in equilibrium with present-day climate conditions

Southern Methodist University (SMU) – Dallas, TX
Oregon State University (OSU) – Corvallis, OR
US Geological Survey (USGS) – Woods Hole, MA

The gas hydrate stability zone thins or vanishes on upper continental slopes (~250 to 500 m water depth) worldwide due to prevailing pressure-temperature conditions. An estimated 3.5 percent of the global gas hydrate inventory is contained in thin zones in the near-seafloor sediments of these upper continental slopes. This gas hydrate accumulation is the most susceptible on Earth to dissociation as a result of contemporary climate change. The time lag between climate events (e.g., sea level fluctuations, water temperature variations) and the re-equilibration of gas hydrates in the upper continental slope areas in the Arctic also means that some of these zones may still be readjusting to climate change since the end of the last glacial maximum (~20 ka).

Schematic of Earth’s permafrost-associated and deepwater gas hydrate provinces. Focus of this research is on the most climate-susceptible gas hydrates, located within the yellow box.

This project will—through an assessment of the impact of climate change on susceptible gas hydrates in the U.S. Arctic—yield the first systematic geochemical and microbiological data to constrain subseafloor methane sinks and the spatio-temporal changes in the nature of microbial systems and pore fluids in re-equilibrating gas hydrate zones. The project will be the first ever to directly acquire thermal data from the Beaufort Sea continental slope and represents an integration of physical (oceanography, geophysics), chemical, and biological science. The project will yield constraints on the rate of re-equilibration of gas hydrates located on the upper continental slope in response to external forcings as well as quantitative predictions about the impact of hydrate-derived gas on the strength of slope sediments (geohazards), the flux of gas to the overlying ocean, and the areal extent of dissociation (or, in some cases, hydrate re-formation) processes.

The USGS, led by Principal Investigator Carolyn Ruppel, completed a research cruise on the Northern US Atlantic Margin.

In order to capitalize on this research and take advantage of DOE Office of Science research capabilities, OSU submitted a proposal entitled, Integrated biogeochemical modeling of microbial consortia mediating anaerobic oxidation of methane in dynamic methane hydrate-bearing sediments to the Joint Genome Institute–Environmental Molecular Sciences Laboratory (EMSL) Collaborative Science Initiative. The proposal, selected for award in July, will  allow the project team to perform whole-genome sequencing on environmental isolates obtained from sediments, assemble the genomes for these organisms, and utilize EMSL resources to guide construction of the individual metabolic models for microorganisms involved in anaerobic methane oxidation.

In March 2014, SMU received some 2012 sparker seismic line data from the USGS that are nearly coincident with data from a 1982 industry survey line. The data will be used to develop dynamic numerical models extending from 1982 to the present. Currently, the numerical heat flow model used for 1977 seismic data heat flow modeling is being reconfigured to apply the 1982 and 2012 datasets.

In addition to developing a dynamic numerical model, SMU has integrated advective fluid flow into the model parameters to better understand the role of fluid flow in hydrate stability along the margin. Preliminary results from advection models demonstrate that the anomalously deep BSRs observed in 1977 data along the Beaufort Margin cannot easily be explained via fluid advection from the shelf.

SMU has constrained the upper and lower boundary conditions in their methane hydrate stability model. Upper boundary conditions were based on an analysis of depth-dependent ocean temperatures over various time periods. Lower boundary conditions consider heat flow across the North Slope and Beaufort Sea, and were based on a rigorous statistical analysis of offshore seismic data and historical conductivity and temperature logs. The result is a first-of-its-kind land-sea heat flow contour map of the North Slope of Alaska to the abyssal plane of the Beaufort Sea.

The USGS completed the ship-scoping exercise. Recommendations for use of the R/V Norseman II, which provides the best platform for the coring/heat-flow study, were provided to DOE and accepted.

SMU completed a new forward time, finite difference 3-D heat flow model that utilizes parallel processing on a computational graphics processing unit (cGPU). Integrating the heat flow model with the GPU computing code dramatically increases the computational speed by ~100 times; a 3-D model that initially took ~30 days to run now takes ~7 hours. Multiple 3-D heat flow scenarios at varying resolutions for the U.S. Beaufort have been run using the new code to assess hydrate stability across the region. The results of these model runs have been documented in a draft manuscript submitted for review to the Journal of Geophysical Research: Solid Earth.

Current Status (November 2015)
As part of an effort to further constrain methane dynamics on the Northern US Atlantic Margin, researchers from the USGS partnered with scientists from Oregon State, UCLA, and GEOMAR (Institute for marine sciences in Kiel, Germany) to conduct coring, heat flow, and imaging of the water column and seafloor. During the two week expedition (September 7 – 22, 2015) researchers aboard the R/V Hugh R. Sharp collected 20 piston cores containing a total of 97m of core. The cores were collected at upper slope hydrate/no hydrate transitions, in seep fields, and in background locations, with the majority of the cores being collected with outrigged heat flow sensors. The team also collected 12 mini-multicores (4 x 20cm cores) of sediment along with real-time video of the seafloor at each coring location. Fourteen CTD (Conductivity-Temperature-Depth) profiles were also obtained along with many bottom water temperature measurements that will assist in providing the constraint on the boundary condition for hydrate stability. Water column images were captured by an EK60 split-beam echo sounder, which in one location tracked a plume emitted in 400 m of water up to within 25 m of the sea surface. Geophysical operations, which were conducted at night, consisted of the collection of high-resolution Chirp (seismic) data which were used to site coring locations.  A second heat flow expedition, led by SMU aboard the M/V Norseman II, in the Beaufort Sea is currently being planned and scheduled for September of 2016.

Project Start: October 1, 2012
Project End: March 31, 2017

Project Cost Information:

SMU Cooperative Agreement

Phase 1 – DOE Contribution: $95,826, Performer Contribution: $62,637

Phase 2 – DOE Contribution: $537,681, Performer Contribution: $166,462

Phase 3 – DOE Contribution: $697,108, Performer Contribution: $158,617


USGS Interagency Agreement – DOE Contribution: $239,879


Planned Total Funding

DOE Contribution: $1,570,494, Performer Contribution: $387,716

Contact Information:
NETL – Skip Pratt ( or 304-285-4396)
Southern Methodist University – Dr. Matthew Hornbach ( or 214-768-2389)
Oregon State University – Prof. Frederick Colwell ( or 541-737-5220)
USGS – Dr. Carolyn Ruppel ( or 508-457-2339)
USGS – Dr. John Pohlman ( or 508-457-2213)

Additional Information

Research Performance Progress Report [PDF-358KB] July - September, 2015 

Research Performance Progress Report [PDF-354KB] April - June, 2015

Research Performance Progress Report [PDF-393KB] January - March, 2015

Research Performance Progress Report [PDF-98KB] July - September, 2014

Research Performance Progress Report [PDF-381KB] April - June, 2014

Research Performance Progress Report [PDF-365KB] January - March, 2014

Research Performance Progress Report [PDF-156KB] October - December, 2013

Research Performance Progress Report [PDF-468KB] July - September, 2013

Research Performance Progress Report [PDF-455KB] April - June, 2013

Research Performance Progress Report [PDF-108KB] January - March, 2013

Research Performance Progress Report [PDF-425KB] October - December, 2012

Get Social With Us: