Project Description
The goal of this project is to develop and validate for multiphase gas-solids flow simulations, a non-intrusive uncertainty quantification (UQ) procedure based on polynomial chaos methodology together with a quadrature-based reconstruction of the multivariate probability density function required by the approach, and to implement the procedure as a new algorithm in the NETL Multiphase Flow with Interphase eXchanges (MFIX) multi-phase flow simulation package. The new UQ procedure will first be tested and validated on gas-particle flow problems for which analytical or simple algebraic solutions exist. The procedure will then be installed in MFIX and tested on two (2) complex gas-solid flow scenarios that represent different gas-solids flow regimes.
Project Benefits
This project will develop polynomial chaos (PC) methods to evaluate the PC modes from the outputs of an existing numerical implementation of the model (the non-intrusive approach). The project will develop and implement an efficient non-intrusive UQ method for gas-solids flow simulations, that will reduce the amount of uncertainty that must currently be factored into the design of multiphase coal fired power generation equipment and systems and thus, result in lower equipment and operating costs of these systems.
Contact Information
Click to view Presentations, Papers, and Publications