Project No: FE0006696
Performer: Florida Turbine Technologies Inc.


Contacts

Richard A. Dennis
Technology Manager, Turbines
National Energy Technology Laboratory
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
304-285-4515
richard.dennis@netl.doe.gov

Steven Richardson
Project Manager
National Energy Technology Laboratory
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
304-285-4185
steven.richardson@netl.doe.gov

James P. Downs
Principal Investigator
Florida Turbine Technologies, Inc.
1701 Military Trail, Suite 110
Jupiter, Florida 33458-7101
561-427-6250
jdowns@fttinc.com

Duration
Award Date:  07/08/2011
Project Date:  09/30/2014

Cost
DOE Share: $1,310,845.00
Performer Share: $396,295.00
Total Award Value: $1,707,140.00

Performer website: Florida Turbine Technologies Inc. - http://www.fttinc.com

Advanced Energy Systems - Hydrogen Turbines

Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

Project Description

The scope of this Small Business Innovative Research (SBIR) Program Phase III project includes the design, analysis, fabrication, assembly, installation, and testing of prototype spar-shell turbine airfoils and associated hardware, culminating in the validation of performance and functionality in a commercial gas turbine.

FTT Spar-Shell Vane under Construction for Test in a Large-Scale Industrial Gas Turbine Engine.

FTT Spar-Shell Vane under Construction for Test in a Large-Scale Industrial Gas Turbine Engine.


Program Background and Project Benefits

Turbines convert heat energy to mechanical energy by expanding a hot, compressed working fluid through a series of airfoils. Combustion turbines compress air, mix and combust it with a fuel (natural gas, coal-derived synthesis gas [syngas], or hydrogen), and then expand the combustion gases through the airfoils. Expansion turbines expand a working fluid like steam or supercritical carbon dioxide (CO2) that has been heated in a heat exchanger by an external heat source. These two types of turbines are used in conjunction to form a combined cycle— with heat from the combustion gases used as the heat source for the working fluid— improving efficiency and reducing emissions. If oxygen is used for combustion in place of air, then the combustion gases consist mostly of carbon dioxide (CO2) and water, and the CO2 can be easily separated and sent to storage or used for Enhanced Oil Recovery (EOR). Alternatively, the CO2/steam combustion gases can be expanded directly in an oxy-fuel turbine. Turbines are the backbone of power generation in the US, and the diverse power cycles containing turbines provide a variety of electricity generation options for fossil derived fuels. The efficiency of combustion turbines has steadily increased as advanced technologies have provided manufacturers with the ability to produce highly advanced turbines that operate at very high temperatures. The Advanced Turbines program is developing technologies in four key areas that will accelerate turbine performance, efficiency, and cost effectiveness beyond current state-of-the-art and provide tangible benefits to the public in the form of lower cost of electricity (COE), reduced emissions of criteria pollutants, and carbon capture options. The Key Technology areas for the Advanced Hydrogen Turbines Program are: (1) Hydrogen Turbines, (2) Supercritical CO2 Power Cycles, (3) Oxy-Fueled Turbines, and (4) Advanced Steam Turbines.

Hydrogen turbine technology research is being conducted with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the Nation's increasing energy challenges. NETL is leading the research, development, and demonstration of technologies to achieve power production from high hydrogen content (HHC) fuels derived from coal that is clean, efficient, and cost-effective; minimize carbon dioxide (CO2) emissions; and help maintain the Nation's leadership in the export of gas turbine equipment. These goals are being met by developing the most advanced technology in the areas of materials, cooling, heat transfer, manufacturing, aerodynamics, and machine design. Success in these areas will allow machines to be designed that have higher efficiencies and power output with lower emissions and lower cost.

The scope of this Small Business Innovative Research (SBIR) Program Phase III project includes the design, analysis, fabrication, assembly, installation, and testing of prototype spar-shell turbine airfoils and associated hardware, culminating in the validation of performance and functionality in a commercial gas turbine. Manufacturing research conducted under the Advanced Turbine Program seeks to develop existing or novel manufacturing processes that will improve yields, reduce defects, lower costs, and enable component designs that were previously unattainable. These improvements will lower capital costs, improve turbine efficiency, and reduce maintenance, leading to reduced operating costs, and reduced costs of electricity for consumers.


Accomplishments

Produced a viable design concept which continues to be developed within the detailed design phase.