The Gas Turbine Handbook

TABLE OF CONTENTS

  • Acknowledgements
  • Updated Author Contact Information
  • Introduction – Rich Dennis, Turbines Technology Manager
  • 1.1 Simple and Combined Cycles – Claire Soares
    • 1.1-1 Introduction
    • 1.1-2 Applications
    • 1.1-3 Applications versatility
    • 1.1-4 The History of the Gas Turbine
    • 1.1-5 Gas Turbine, Major Components, Modules, and systems
    • 1.1-6 Design development with Gas Turbines
    • 1.1-7 Gas Turbine Performance
    • 1.1-8 Combined Cycles
    • 1.1-9 Notes
  • 1.2 Integrated Coal Gasification Combined Cycle (IGCC) – Massod Ramezan and Gary Stiegel
    • 1.2-1 Introduction
    • 1.2-2 The Gasification Process
    • 1.2-3 IGCC Systems
    • 1.2-4 Gasifier Improvements
    • 1.2-5 Gas Separation Improvements
    • 1.2-6 Conclusions
    • 1.2-7 Notes
  • 1.2.1 Different Types of Gasifiers and Their Integration with Gas Turbines – Jeffrey Phillips
    • 1.2.1-1 Introduction
    • 1.2.1-2 Generic Types of Gasifiers
    • 1.2.1-3 Other Design Options
    • 1.2.1-4 Integrating with a Combined Cycle
    • 1.2.1-5 Commercially Available Large-Scale Gasifiers
    • 1.2.1-6 Near-Commercial Gasifiers of Interest
    • 1.2.1-7 Conclusions
    • 1.2.1-8 Notes
  • 1.2.2 Implications of CO2 Sequestration for Gas Turbines – Ashok Rao
    • 1.2.2-1 Introduction
    • 1.2.2-2 Implications for Gas Turbines
    • 1.2.2-3 Conclusions
    • 1.2.2-4 Notes
  • 1.3.1.1 Graz Cycle - a Zero Emission Power Plant of Highest Efficiency – Franz Heitmeir, Herbert Jericha, Wolfgang Sanz
    • 1.3.1.1-1 Introduction
    • 1.3.1.1-2 Cycle configuration and thermodynamic layout
    • 1.3.1.1-3 Turbomachinery Design
    • 1.3.1.1-4 Economic Evaluation
    • 1.3.1.1-5 Conclusions
    • 1.3.1.1-6 Abbreviations and Appendix
    • 1.3.1.1-7 Notes
  • 1.3.1.2 Clean Energy Systems – Fermin 'Vic' Viteri
    • 1.3.1.2-1 Introduction
    • 1.3.1.2-2 The CES Zero Emissions Power Plant
    • 1.3.1.2-3 ASU and Turbine Compressor Matching
    • 1.3.1.2-4 Effect of Drive Gases on Gas Turbine Operating Parameters
    • 1.3.1.2-5 Effect of Coolant on Gas Turbine Blade Temperatures
    • 1.3.1.2-6 Gas Turbine Operation with CES Gases versus Air-Breathing Gases
    • 1.3.1.2-7 Turbine Materials Issues
    • 1.3.1.2-8 Integrated Plant Concepts
    • 1.3.1.2-9 Performance
    • 1.3.1.2-10 Conclusions
    • 1.3.1.2-11 Notes
  • 1.3.1.3 Hydrogen-Fueled Power Systems – Wen-Ching Yang
    • 1.3.1.3-1 Introduction
    • 1.3.1.3-2 The High Temperature Steam Cycle (HTSC) Power System
    • 1.3.1.3-3 The New Rankine Cycle
    • 1.3.1.3-4 The Rankine Cycle with Reheat And Recuperation
    • 1.3.1.3-5 Developmental Requirements
    • 1.3.1.3-6 Conclusions
    • 1.3.1.3-7 Notes
  • 1.3.2 Advanced Brayton Cycles – Ashok Rao
    • 1.3.2-1 Introduction
    • 1.3.2-2 Gas Turbine Technology
    • 1.3.2-3 Conclusions
    • 1.3.2-4 Notes
  • 1.3.3 Partial Oxidation Gas Turbine (POGT) Cycles – Joseph K. Rabovitser, Ph.D., Serguei Nester, Ph.D.
    • 1.3.3-1 Introduction
    • 1.3.3-2 Background
    • 1.3.3-3 Overview
    • 1.3.3-4 POGT Applications
    • 1.3.3-5 Conclusions
    • 1.3.3-6 Acronyms and Abbreviations
    • 1.3.3-7 Notes
  • 1.4 Hybrid Gas Turbine Fuel Cell Systems – Jack Brouwer
    • 1.4-1 Introduction
    • 1.4-2 Background
    • 1.4-3 Fuel Cell Technology
    • 1.4-4 Hybrid Gas Turbine Fuel Cell Concept
    • 1.4-5 Early Hybrid Gas Turbine Fuel Cell Developments
    • 1.4-6 Dynamic Simulation of Hybrid Systems
    • 1.4-7 Hybrid System Control
    • 1.4-8 Research & Development Needs for Hybrid Gas Turbine Fuel Cell Systems
    • 1.4-9 Acknowledgments
    • 1.4-10 Notes
  • 2.0 Axial-Flow Compressors – Meherwan P. Boyce
    • 2.0-1 Introduction
    • 2.0-2 Blade and Cascade Nomenclature
    • 2.0-3 Elementary Airfoil Theory
    • 2.0-4 Laminar-Flow Airfoils
    • 2.0-5 Energy Increase
    • 2.0-6 Velocity Triangles
    • 2.0-7 Degree of Reaction
    • 2.0-8 The Deviation Rule
    • 2.0-9 Compressor Operation Characteristics
    • 2.0-10 Compressor Performance Parameters
    • 2.0-11 Performance Losses in an Axial-Flow Compressor
    • 2.0-12 New Developments in Axial Flow Compressors
    • 2.0-13 Recent Advances and Research Requirements
    • 2.0-14 Compressor Blade Material
    • 2.0-15 Acknowledgements
    • 2.0-16 Bibliography
  • 3.1 Key Combustion Issues Associated with Syngas and High-Hydrogen Fuels – Vincent McDonell
    • 3.1-1 Key Combustion Issues Associated with Syngas and High-Hydrogen Fuels
    • 3.1-2 Notes
  • 3.1.1 Static and Dynamic Combustion stability – Timothy C. Lieuwen
    • 3.1.2-1 Introduction
    • 3.1.2-2 Static Stability
    • 3.1.2-3 Dynamic Stability
    • 3.1.2-4 Notes
  • 3.2 Combustion Strategies for Syngas and High-Hydrogen Fuel – Pete Strakey, Nate Weiland, Geo Richards
    • 3.2-1 Introduction
    • 3.2-2 NOx formation
    • 3.2-3 Diffusion flame combustor
    • 3.2-4 Lean Direct Injection
    • 3.2-5 Highly-strained diffusion flame combustors
    • 3.2-6 Premixed Combustion
    • 3.2-7 Tuning and Combustor Control
    • 3.2-8 Oxy-Fuel Combustion
    • 3.2-9 Notes
  • 3.2.1.1 Conventional Type Combustion – Scott Samuelsen
    • 3.2.1.1-1 Introduction
    • 3.2.1.1-2 Combustor Features
    • 3.2.1.1-3 Primary Zone
    • 3.2.1.1-4 Secondary Zone
    • 3.2.1.1-5 Dilution Zone
    • 3.2.1.1-6 Heat Transfer
    • 3.2.1.1-7 Combustor Configurations
    • 3.2.1.1-8 Notes
  • 3.2.1.2 Lean Pre-Mixed Combustion – Bill Bender
    • 3.2.1.2-1 Introduction
    • 3.2.1.2-2 Emissions Overview
    • 3.2.1.2-3 Regulatory Overview
    • 3.2.1.2-4 Combustion Principles
    • 3.2.1.2-5 Combustor Designs
    • 3.2.1.2-6 LPM Technological Challenges
    • 3.2.1.2-7 LPM Future Developments
    • 3.2.1.2-8 Dual Fuel Operation
    • 3.2.1.2-9 Fuel Variability Concerns
    • 3.2.1.2-10 Background Information
    • 3.2.1.2-11 Nitrogen Oxide Formation
    • 3.2.1.2-12 Conclusions
    • 3.2.1.2-13 Notes
  • 3.2.1.3 Rich Burn, Quick-Mix, Lean Burn (RQL) Combustor – Scott Samuelsen
    • 3.2.1.3-1 Introduction
    • 3.2.1.3-2 Quick-Mix Zone
    • 3.2.1.3-3 Formation of Nitrogen Oxide
    • 3.2.1.3-4 Conclusions
    • 3.2.1.3-5 Notes
  • 3.2.1.4.1 Trapped Vortex Combustion – Robert Steele
    • 3.2.1.4.1-1 Trapped Vortex Combustion
    • 3.2.1.4.1-2 The Challenges of IGCC Gas Turbine Combustion
    • 3.2.1.4.1-3 Combustion of Syngas
    • 3.2.1.4.1-4 DOE NETL IGCC Turbine Program
    • 3.2.1.4.1-5 Trapped Vortex Combustion – Breakthrough Technology
    • 3.2.1.4.1-6 TVC Development
    • 3.2.1.4.1-7 Notes
  • 3.2.1.4.2 Low Swirl Combustion – Robert K. Cheng
    • 3.2.1.4.3-1 Introduction
    • 3.2.1.4.3-2 Principle of Low-swirl Combustion and Technology Transfer History
    • 3.2.1.4.3-3 Scaling rules and engineering guidelines
    • 3.2.1.4.3-4 Flowfield characteristics and the their relevance to flame stability
    • 3.2.1.4.3-5 Development of low-swirl injectors for natural gas turbines
    • 3.2.1.4.3-6 Development of LSI for IGCC
    • 3.2.1.4.3-7 Conclusions
    • 3.2.1.4.3-8 Notes
  • 3.2.2 Catalytic Combustion – Dr. Lance Smith, Dr. Hasan Karim, Dr. Shahrokh Etemad, Dr. William C. Pfefferle
    • 3.2.2-1 Introduction
    • 3.2.2-2 Role of Catalysis in Combustion
    • 3.2.2-3 Catalyst Materials for Combustion Applications
    • 3.2.2-4 Systems for Catalytic Combustion
    • 3.2.2-5 Challenges for Catalytic Combustion
    • 3.2.2-6 Conclusions
    • 3.2.2-7 Notes
  • 3.2.2.1 Fuel-Rich Catalytic Combustion – Dr. Lance Smith, Dr. Hasan Karim, Dr. Shahrokh Etemad, Dr. William C. Pfefferle
    • 3.2.2.1-1 Introduction
    • 3.2.2.1-2 Fuel-Rich Catalyst Systems
    • 3.2.2.1-3 Rich-Catalytic Lean-burn (RCL) Combustion
    • 3.2.2.1-4 Performance and Operating Characteristics of RCL Combustion
    • 3.2.2.1-5 Full-Scale Full-Pressure Test at Solar Turbines
    • 3.2.2.1-6 Sub-Scale Test Data for Hydrocarbon Fuels
    • 3.2.2.1-7 Engine Test Results
    • 3.2.2.1-8 Ultra-Low NOx Combustion of Coal-Derived Syngas and High-Hydrogen Fuels
    • 3.2.2.1-9 Sub-Scale Test Data for Syngas Fuel
    • 3.2.2.1-10 Sub-Scale Test Data for High-Hydrogen and Low-Btu Fuels
    • 3.2.2.1-11 Technology Status and Outlook
    • 3.2.2.1-12 Conclusions
    • 3.2.2.1-13 Notes
  • 3.2.2.2 Catalytic Combustion in Large Frame Industrial Gas Turbines – Ray Laster
    • 3.2.2.2-1 Introduction
    • 3.2.2.2-2 Catalytic Combustion Design
    • 3.2.2.2-3 Rich Catalytic Combustion Applied to Large Gas Turbine Engines
    • 3.2.2.2-4 Conclusions
    • 3.2.2.2-5 Notes
  • 3.2.2.3 Surface Stabilized Combustion – Neil McDougald
    • 3.2.3-1 Introduction
    • 3.2.3-2 Technology
    • 3.2.3-3 Experimental Results
    • 3.2.3-4 Conclusions
    • 3.2.3-5 Notes
  • 4.1 Turbine Cooling Design Analysis – Karen Thole
    • 4.1 Introduction
  • 4.2.1 Cooling Design Analysis – Ron S. Bunker
    • 4.2.1-1 Introduction
    • 4.2.1-2 Level 0 – Preliminary Cooling Design Analysis
    • 4.2.1-3 Level 1 – Conceptual Cooling Design Analysis
    • 4.2.1-4 Three-Dimensional Analysis
    • 4.2.1-5 Level 2 – Detailed Component and System Cooling Design Analysis
    • 4.2.1-6 Turbine Secondary Cooling Circuit Analyses
    • 4.2.1-7 Level 3 – Transient Operational Cooling Design Analysis
    • 4.2.1-8 Notes
  • 4.2.2.1 Airfoil Film Cooling – David Bogard
    • 4.2.2.1-1 Introduction
    • 4.2.2.1-2 Fundamentals of Film Cooling Performance
    • 4.2.2.1-3 Correlations of Film Cooling Performance
    • 4.2.2.1-4 Effects of Hole Geometry and Configuration on film Cooling Performance
    • 4.2.2.1-5 Airfoil Surface Effects on Film Cooling Performance
    • 4.2.2.1-6 Mainstream Effects on Film Cooling Performance
    • 4.2.2.1-7 Airfoil Leading Edge Film Cooling
    • 4.2.2.1-8 Notes
  • 4.2.2.2 Enhanced Internal Cooling of Turbine Blades and Vanes – Je-Chin Han and Lesley M. Wright
    • 4.2.2.2-1 Introduction
    • 4.2.2.2-2 Enhanced Internal Cooling of Turbine Vanes
    • 4.2.2.2-3 Enhanced Internal Cooling of Turbine Blades
    • 4.2.2.2-4 Concluding Remarks
    • 4.2.2.2-5 Notes
  • 4.2.3 Airfoil Endwall Heat Transfer – Karen Thole
    • 4.2.3-1 Introduction
    • 4.2.3-2 Theoretical Development of Endwall Flows
    • 4.2.3-3 Endwall Heat Transfer
    • 4.2.3-4 Endwall Film-Cooling
    • 4.2.3-5 Leading Edge Modifications
    • 4.2.3-6 Other Relevant Vane Endwall Studies
    • 4.2.3-7 Blade Tip Heat Transfer
    • 4.2.3-8 Notes
  • 4.3 Turbine Blade Aerodynamics – Sumanta Acharya
    • 4.3-1 Introduction
    • 4.3-2 Flow Field in the Mid-span Region
    • 4.3-3 Flow Field in the Endwall Region
    • 4.3-4 Development and Structure of Secondary Flows in the Passage
    • 4.3-5 Pressure Loss
    • 4.3-6 Aerodynamics of 2-D Vane Cascade
    • 4.3-7 Aerodynamics of 3-D Cascade
    • 4.3-8 Aerodynamics with Passage Modifications
    • 4.3-9 Notes
  • 4.4 Heat Transfer Analysis – Frank J. Cunha
    • 4.4-1 Introduction
    • 4.4-2 Heat Transfer Requirements
    • 4.4-3 Gas Heat Transfer
    • 4.4-4 Gas Temperature Transverse Quality
    • 4.4-5 Airfoil Thermal Load
    • 4.4-6 Leading Edge Thermal Load
    • 4.4-7 Coolant Heat Transfer
    • 4.4-8 Film Cooling
    • 4.4-9 Trip Strips or Turbulence Promoters for Cooling Passages
    • 4.4-10 Impingement Cooling for Cross-Over Holes and Inserts
    • 4.4-11 Pin-Fin or Pedestals for Trailing Edge Cooling
    • 4.4-12 Bulk Temperatures for Cooling Passages
    • 4.4-13 Thermal-Mechanical Aspects of Durability
    • 4.4-14 Conclusions
    • 4.4-15 Notes
  • 4.4.1 Buckets and Nozzles – Stephen J. Balsone
    • 4.4.1-1 Introduction
    • 4.4.1-2 Background
    • 4.4.1-3 Process Development – Investment Casting of DS and SX Alloys
    • 4.4.1-4 Process Development – High Gradient Casting
    • 4.4.1-5 Alloy Development – Buckets
    • 4.4.1-6 Alloy Development – Nozzles
    • 4.4.1-7 Materials Performance
    • 4.4.1-8 Conclusions
    • 4.4.1-9 Notes
  • 4.4.2 Protective Coatings for Gas Turbines – Kang N Lee
    • 4.4.2-1 Introduction
    • 4.4.2-2a Coatings for Superalloy Components
    • 4.4.2-2b Bond Coat
    • 4.4.2-2c Top Coat
    • 4.4.2-2d Failure Mechanisms of TBC
    • 4.4.2-3a Coatings for Ceramic Components
    • 4.4.2-3b Processing
    • 4.4.2-3c Testing
    • 4.4.2-3d Bond Coat
    • 4.4.2-3e Top Coat
    • 4.4.2-4 Conclusions
    • 4.4.2-5 Notes
  • 5.0 Turbine System Economics and Reliability, Availability & Maintainability (RAM) – Bonnie Marini
    • 5.0-1 Introduction
    • 5.0-2 The Power Market Drivers
    • 5.0-3 The Economics of Making Electricity
    • 5.0-4 Operating Strategies and Options
    • 5.0-5 Conclusions
    • 5.0-6 Notes
  • 6.0.1 The DOE Turbine Program: Overall Program Description – Richard Dennis
  • 6.0.2 NETL Internal Combustion and Turbine Research – George Richards
  • 6.0.3 The University Turbine Systems Research (UTSR) Program – William H. Day, Richard A. Wenglarz, and Lawrence P. Golan
    • 6.0.3-1 Introduction
    • 6.0.3-2 The Challenge of Synfuels
    • 6.0.3-3 Gas Turbine Industrial Fellowship
    • 6.0.3-4 Notes
StayConnected Facebook Twitter LinkedIn RssFeed YouTube