CCS and Power Systems

ADVANCED ENERGY SYSTEMS - GASIFICATION SYSTEMS

Warm Gas Cleanup

Performer: NETL Office of Research and Development

Project No: FWP-2012.03.03 Task 5


Program Background and Project Benefits

Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated—the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

Syngas processing research and development underway emphasizes technologies that can be efficiently integrated into the plant, optimized with the temperature and pressure requirements of other systems, and meet product delivery specifications. A major cost element in gasification plants is converting raw syngas into a pure and specific gas used to create the plant's target product suite. High-hydrogen, low-methane, ultraclean syngas is versatile and can be used for power production with CO2 capture, fuels or chemicals production, and for many polygeneration applications. The technologies being developed are focused on high-efficiency processes that operate at moderate to high temperatures and clean syngas of all contaminants to the extremely low levels needed for chemical production—often significantly lower than the U.S. Environmental Protection Agency (EPA) required levels for power plants.

This NETL Office of Research and Development (ORD) project is developing palladium sorbents at lab and pilot-scale for capture of trace metals (mercury, arsenic, selenium, phosphorus, antimony, and cadmium) from integrated gasification combined cycle (IGCC) plants to meet or exceed EPA's standard limits for contaminants, and to avoid poisoning of downstream process elements such as catalysts and fuel cell electrodes. ORD is also developing a novel warm-gas reactor to allow for capture in one step to reduce the process footprint, costs, and complexity; and increase the certainty of the final disposition of the trace elements. A benefit of removing contaminants at elevated temperatures (up to 550°F) is preserving the higher thermal efficiency of the IGCC system.

 

Project Details
StayConnected Facebook Twitter LinkedIn RssFeed YouTube