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Project  Goals & 2006 Technology Roadmap

Theme:  Particle Size Distribution (PSD)

1. Continuum Theory for the Solid Phase

2. Improved Gas-Particle Drag Laws

3. Gas-Phase Instabilities:  Turbulence Models 

4. Data Collection and Model Validation 

5. Project Management  
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Project Scope:  Work Breakdown Structure



Task 1.1 Kinetic Theory

Mass Balance (s balances)

Momentum Balance (1 balance)

Granular Energy Balance (1 balance)

Garzó, Dufty & Hrenya (PRE, 2007)
Garzó, Hrenya & Dufty (PRE, 2007)
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Constitutive Relations

Mass flux

Stress tensor

Heat flux

Cooling Rate
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Summary of New Theory

1) No limiting assumptions:  non-equipartition & non-Maxwellian

2)  Fewer hydrodynamic variables

• Current Theory: ni, U, and T (s + 2 governing equations)
• Previous Theories: ni, Ui, and Ti (3s governing equations)

but…new theory has implicit form of constitutive relations

3)  No restrictions on dissipation levels

• Previous theories: expansion about e ~ 1
• Current theory:     expansion about HCS



Representation of Continuous PSD

Basic Idea: How to accurately represent a continuous PSD using the 
transport coefficients for ‘s’ discrete species.
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σ1=? σ2=?
φ 1=? φ 2=?

Q1: What method do we choose to find σ’s 
and φi’s for given φ?

A1: moment-based method s=3  
σ1=? σ2=? σ3=?
φ 1=? φ 2=? φ 3=?Q2: What value of ‘s’ is required for 

‘accurate’  representation of 
continuous PSD?

A2:  “collapsing” of transport coefficients 
from new KTGF



(a) (b) (c)

(d) (e) (f)

Representation of Continuous PSD’s with discrete 
approximations:  Mixed distributions (Gaussian-lognormal)

s =6 most accurate s =5 ~ s =6 s =5 & s =6 indistinguishable;
s = 4 approaching s=5 



(f)

(a) (b) (c)

Gaussian-lognormal distributions (cont…)

(d) (e) (f)



Representation of Continuous PSD’s with discrete 
approximations: Experimental distribution (NETL)

(b)

(a)

(c)

• Weight based distribution is bidisperse in 
nature.

• The number based frequency (fn) is obtained 
using the weight based frequency distribution 
(fw).

• fn is used as the (i) basis for kinetic theory, and 
(ii) used for matching moments of discrete 
with continuous distribution.



NETL distribution (cont..)

(a) (b)

s =4 needed for accurate representation, found to be true with all 
transport coefficients.

As s increases, the discrete approximations are close to NETL 
data (figure(b)).



Task 1.3:  Incorporation of KTGF into MFIX

Verification of 11 transport coefficients
- Coded in Matlab

» System of linear & nonlinear algebraics
» Analytical derivatives:  Mathematica
» Numerical derivatives

- Verification tests
» monodisperse limit (s=1 & 2)
» non-dimensionalization  testing
» switching of indices

MFIX implementation of 11 transport coefficients
- Conversion to stand-alone Fortran subroutines for each coefficient; 

called as-is by MFIX (key “finding”!)
» New linear & nonlinear equation solvers added

- Independent check of hand-generated notes & Fortran code
- Verification test cases:  simple shear flow & bounded conduction

NETL Collaborators
Sofiane Benyahia
Janine Galvin



Task 1.4:  Extension of KTGF to Multiphase Systems
Basic Idea:  Incorporation of fluid force into kinetic equation

• Starting equation for KTGF & DQMOM
• Previous efforts:  Koch and coworkers (e.g., Phys. Fluids 1990)

- Limited to low Re (Stokes flow)
- Uses concept of “fluid velocity at particle location” 

» will lead to unphysical statistics like single-point fluid-particle 
velocity correlation

Alternative:  IBM-based model of instantaneous 
particle acceleration
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instantaneous fluid force
on single particle

gravity collisions
Monodisperse:

(for illustration)

Collaborators
Rodney Fox (ISU)

Vicente Garzo (Extremadura)
Shankar Subramaniam (ISU)



Idealized First Case:  Stokes-flow-based acceleration

( ),fluid i St
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instantaneous 
particle acceleration

Stokes drag coefficient (=6πμd)

instantaneous
particle velocity

mean gas velocity

Idea:  Gain experience with Idealized Case
• Does not account for

- higher Re (Stokes flow only)
- presence of other particles on drag
- instantaneous fluid velocity

• Does account for 
- instantaneous particle velocity



Idealized First Case: KTGF derivation

Balance Equations (Solid-Phase Momentum & Granular Energy)

Zeroth Order Solution to Kinetic Equation
• Same form for HCS (i.e., same scaling solution is used)

Constitutive Relations Modified by β
• Shear viscosity
• Conductivity κk

• Dufour coefficient  μk
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Case II:  IBM-based model for acceleration 

Comments
• IBM-based coefficients will depend on n, Rem & ReT

• In limit of low Rem:
- βΙΒΜ = f(n) only
- γij = f(n)
- Bij = f(n, ReT)
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instantaneous 
particle acceleration

mean
particle 
velocity

mean 
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velocity

fluctuating
particle
velocity

Wiener process increment
(stochastic model for fluctuating

fluid velocity)

coefficients extracted
from IBM simulations



Case II:  KTGF derivation in low Rem limit
Balance Equations (Solid-Phase Momentum & Granular Energy)

Zeroth Order Solution to Kinetic Equation
• HCS solution is non-isotropic, which is contrary to physical expectations 

for no spatial gradients (P can be nondiagonal, q can be nonzero)
• If γij and Bij are scalars instead of tensors (γij=γδij and Bij =Βδij):

- solution is isotropic
- scaling solution is possible (key for derivation of constitutive relations)

Comments
• Constitutive relations:  all are modified by coefficients

Next step:  Incorporate explicit relation for coefficients & evaluate impact
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Task 4.3:  Experiments in a Low-velocity Fluidized Bed

• Basic idea:  use a suite of validation sets with increasing 
levels of “physics” to test new theories:  low-velocity 
fluidized bed does not involve gas-phase turbulence or 
significant particle-particle interactions (kinetic theory)

• Existing experimental data at University of Colorado
- Segregation data for binary mixtures (glass / PS)

(Joseph et al., AIChE J., 2007)
- Bubbling data for binary mixtures  (glass / PS)

(Summer 2007)

• New data
- Segregation data for continuous PSD’s  (sand)

(Current)



Lognormal PSD:  Non-monotonic segregation behavior

σ / dave = 10% σ / dave = 30% σ / dave = 70%
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