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Objective and Rationale

Goal of Collaboration
Simultaneous removal of NOx and Hg  at low T

Catalysis Group (Peter G. Smirniotis)
Promising Catalysts for NOx Removal

Adsorption Group (Neville G. Pinto)
Novel Adsorbents for Hg2+ Removal

Project Objectives

CO as  reductant instead of NH3

Match temperatures of operation for adsorption (↑) and catalysis (↓)

Capture Hgo in addition to Hg2+  both at high capacity

LTSCAR



Location of Low Temperature Selective 
Catalytic and Adsorptive Reactor (LTSCAR)
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(138-160 °C)

Coal

SCR
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Air Heater
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Outline

NOx Removal
• Synthesis and characterization of NOx catalyst 
• SCR of NO with  NH3 and CO

Hg Removal
• Structure of adsorbent
• Synthesis and  characterization of thermally stable 

adsorbents
• Hg2+ Capture
• Hgo Capture



Low Temperature NOx Removal

Catalysis Group
(Peter G. Smirniotis)



Catalyst Synthesis (Wet Impregnation)

Mn precursor
(Mn(II) nitrate hydrate)

Aqueous 
solution

DI H2O TiO2  (Hombikat UV 100)

Evaporation to 
near dryness

Oven drying at
103oC overnight

Calcination at 240oC 
for 4h under air flow



XRD Spectra of Mn-TiO2
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Anatase phase of titania was 
determined from the strongest peak 
located at 2 theta of 25.3o. There are 
no spectra that give sharp peaks that 
correspond to manganese oxide(s). 
We propose that this was caused by 
the high dispersion of manganese on 
the surface of titania. The peak 
intensity of titania decreased when 
manganese ratio of catalyst 
increased. This implies that 
manganese covered the titania
surface in an amorphous state, which 
weakened the intensity of peaks 
coordinated with titania. 



BET Surface Area

BET surface areas of catalyst decreased with an increase in 
manganese. This might indicate some pore blockage by 
manganese.
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Schematic of Experimental Setup for SCR

MS 
Spectrometry
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Experimental SCR Setup



SCR Experimental Conditions

Fixed-bed glass reactor (I.D. 6 mm)

100 mg catalyst (25-45 mesh)

Gas Mixture: NO, O2, He

Reductant: NH3 or CO

Pretreatment: 2 hours;175oC; 40 sccm helium



Summary of Reaction Results with 
Ammonia as Reductant
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NO conversion= (NOin -NOout)/NOout*100%

GHSV = 50,000 h-1



NH3-TPD Spectra of 5wt%Mn-TiO2 at 
Different Temperatures

• Ammonia adsorbs on titania in 
coordinated form over Lewis 
acid sites. It shows 5wt%Mn-
TiO2 has peaks at 1167cm-1

and 1599cm-1. Peak at 
1167cm-1 corresponds to 
δs(NH3) coordinated Lewis acid 
sites that play an important 
role in low-temperature SCR 
for NO (Pena1 et al, 2004). 
Peak at 1599cm-1 is assigned 
to the asymmetric deformation 
of δas(NH3) coordinated to 
Lewis acid sites. These peaks 
began to decrease significantly 
at 300oC and nearly 
disappeared at 400oC. 
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Effect of H2O on NO Conversion

(20 wt% Mn /Hombikat; NH3 Reductant)
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SCR with Ammonia as Reductant

Good performance with 10 wt% and 20 
wt% Mn loaded titania low temperature of 
140oC. 
The catalyst performance is mainly 
coordinated with the ability of the Mn on 
the support surface to participate in the 
redox mode and Lewis acidity sites of the 
titania support (Pena et al., 2004).
High conversions in presence of H2O



Summary of Reaction Results with Carbon 
Monoxide as Reductant
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GHSV = 50,000 h-1



SCR with Carbon Monoxide as 
Reductant

• NOx conversions >35% were achieved. 
• CO can be generated on site in power-plant 

application
• Change of the O2 concentration in the range 

studied does not play a significant role. 
• When the CO concentration is doubled from 

400ppm to 800ppm the conversion of NO 
decreased. This is probably due to a coverage 
of the active sites by the larger concentration of 
CO. 



Thermally Stable Chelating Adsorbents 
for Hg2+ and Hg Capture

Adsorption Group
(Neville G. Pinto)



Chelating Adsorbent

Chelating agents: groups containing donor atoms that combine by 
coordinate bonding with a single metal ion to form a cyclic structure 
called a chelating complex or a chelate.

Solubilizing Ionic Layer

Chelating Ligand

Bonding Chain

≈ 2 nm

(vapor)

Hg2+ Hg2+ Hg2+ Hg2+

Hg2+

Silica Substrate

Flue Gas HgCl2



Synthesis of Cysteine Adsorbent
• Amination of silica surface:

• Bonding of Aldehyde Linker:

• Bonding Cysteine Residue:

* Yield 55-60% *



BET Analysis
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Schematic of Apparatus for Mercury Adsorption 
Study
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Experimental Setup for HgCl2 Removal



Evaluation of Dynamic Capacity at Flue Gas 
Conditions

balanceN2

5-7%H2O

500 ppmNO

1500 ppmSO2

100-150 ppmHCl

15-16%CO2

Concentration (by volume)Species



Typical Effluent Concentration History for HgCl2
from Cysteine Activated Adsorbent Bed
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Location of Low Temperature Selective 
Catalytic and Adsorptive Reactor (LTSCAR)

Coal
Processing Particulate
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Chelating Bond Thermal Stability
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Density of Active Sites

27 (20% loss)0.962.760.851.44Cys-
135°C

331.182.321.041.35Cys-1

19 (43% loss)0.692.620.611.28Cys-
160°C

341.212.771.071.54Cys-2

(mg/g)(µmol/m2)(µmol/m2)SN

Hg capacityCysteine 
coverage 

APTS 
coverageElement wt%

Sample



Location of Low Temperature Selective 
Catalytic and Adsorptive Reactor (LTSCAR)

Coal
Processing Particulate

Collectors
(280-320 °F)
(138-160 °C)

Coal
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Air Heater
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20-40oC cooling of 
gas required

Develop thermally robust 
versions



Thermally Stable Adsorbents Characteristic Properties
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2-Mercaptobenzothiazole (APTS-MBT)

Pu et al., J. Anal. At. Spectrom., 13, 1998.

React MBT with 3-aminopropyltriethoxysilane (APTS) 
modified silica gel.



Thermal Stability of APTS-MBT
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Effluent Concentration History for HgCl2 Using 
APTS-MBT Adsorbent at 160°C
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Simultaneous Removal of Elemental and Oxidized 
Mercury

Hg (vapor)

Hg+

0
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≈ 2 nm

HgCl2 (vapor)
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Hgo Oxidation Using Novel Oxidizing Layers 
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N2 carrier gas 
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Effect of Oxidizing Layers A and B on Surface 
Area and Porosity of Silica

0.80.6916.115025Coating 
Layer B

1.00.6116.113030
0.80.7316.014425
0.60.8116.416620
0.40.8916.319515
0.20.9916.121710
0.11.0516.12455
01.1816.32830Coating 

Layer A

Coating 
layer

thickness
(nm)

Cumulative
pore volume

(cm3/g)

Mean pore 
diameter

(nm)

BET surface 
area(m2/g)

wt % Oxidizing
layer



Summary

NOx Removal
• Hombikat titania loaded with 10wt% and 20wt% Mn showed very 

good performance even at low temperature of 140oC with NH3 as 
reductant.

• When carbon monoxide was used as the reductant, NOx conversions 
of more than 35% were achieved at the low temperature of 175oC

Mercury Capture
• Thermally stable, high capacity chelating adsorbents for capture of 

Hg2+ have been developed. These are suitable for flue-gas 
contacting at temperatures in the range 160-190°C.

• Novel oxidizing layers for the in situ oxidation of Hgo on the chelating 
adsorbent surface with subsequent capture as Hg2+ are being 
investigated. Preliminary results are promising.



Future Work
• Investigation of mechanism of SCR with CO as reductant, 

at low temperature and in simulated coal combustion flue 
gas mixture

• Development of Mn-Me (Me=transition metal) bimetallic 
combinations as potential high activity catalysts for this 
reaction.

• Synthesis and characterization of oxidation catalysts and 
oxidants for elemental mercury.

• Very long term experiments to obtain complete effluent 
concentration histories for Hg adsorption on thermally 
stable chelating adsorbents.

• Preliminary studies on simultaneous removal of NOx and 
Hg.


