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EXECUTIVE SUMMARY 

This report is one of two deliverables resulting from a Lawrence Berkeley National Laboratory 
(LBNL) National Risk Assessment Partnership (NRAP) project that aimed at developing, testing, 
and applying novel methods for modeling geologic storage of carbon dioxide (CO2) and jointly 
inverting monitoring data for leakage detection. This first NRAP report summarizes the method 
for jointly inverting hydrological and geophysical monitoring data. The ability to identify 
potential leakage pathways with monitoring data and continually monitor localized leakage of 
CO2 and/or brine is essential for the science-based quantitative risk assessment at the core of the 
mission of NRAP. The second NRAP report describes the development, demonstration, and 
application of an inversion-based methodology for early leakage detection using pressure and 
surface deformation monitoring data. 

Geophysical data hold great potential for improved characterization of subsurface properties and 
processes, but can be challenging to analyze because of resolution limitations and indirect or 
ambiguous relationships with hydrological properties. Prior work has shown that the usefulness 
of geophysical data can be improved when analyzed in a framework that jointly integrates 
geophysical and hydrological data while taking into account complex flow and transport 
processes.  

The main goal of this work was to develop and test an approach for the coupled (joint) inversion 
of hydrological and geophysical data for improved prediction of CO2 migration in the 
subsurface. The procedure resulted not only in an estimate of the CO2 distribution in the 
subsurface, but also a calibrated hydrological model that can be used to better understand and 
predict CO2 migration. While the particular methods used depend on characteristics of the site of 
interest and the types of measurements that were available, the inversion approach included the 
following main components:  

1. A hydrological forward model that simulates flow and transport, such as that resulting 
from the injection of CO2 and/or tracers, and also simulates the corresponding time-lapse 
hydrological measurements  

2. A procedure for mapping the simulated hydrological properties and system state onto the 
geophysical numerical grid (the hydrological and geophysical numerical grids are usually 
different)  

3. Petrophysical models that relate the hydrological state variables (e.g., CO2 saturation, 
fluid density, temperature and pressure) to geophysical properties (e.g., elastic moduli or 
electrical resistivity) 

4. Forward models that simulate the geophysical measurements at the corresponding survey 
times  

5. An optimization algorithm that iteratively repeats steps (1) through (4), aiming to find 
estimates of the unknown parameters by minimizing the misfit between the measured and 
simulated hydrological and geophysical data 

The approach is presented in Section 2, including a description of the coupled hydrological-
geophysical inverse modeling framework that was implemented in iTOUGH2, details about the 
corresponding hydrological and geophysical forward modeling procedures, and a brief 
demonstration of how the new coupled modeling capabilities can be used to analyze seismic and 
hydrological data from the Frio II pilot test.  
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In Section 3, an in-depth case study is presented that evaluated how electrical resistance 
monitoring data, when used together with hydrological data in the coupled hydrological-
geophysical framework, can help constrain models for simulating CO2 migration at the Southeast 
Regional Carbon Sequestration Partnership (SECARB) pilot site located in Cranfield, 
Mississippi. Time-lapse electrical resistance tomography (ERT) data was analyzed first in an 
effort to identify a reliable form of the data to aid in calibrating flow and transport models in 
subsequent steps. While it was apparent that the resistivity increases due to the arriving gas phase 
CO2, ERT inversions were strongly improved by including borehole log data as a structural 
constraint. Inversion of ERT data for two dimensional (2-D) and three-dimensional (3-D) 
resistivity distributions compared well with previously published results, though the estimated 3-
D resistivity distributions showed out-of-plane (i.e., the plane formed between the observation 
wells) variations, indicating 3-D effects may be significant and should be considered in future 
research.   

There may be insufficient information to image the fine-scale CO2 movement through the 
reservoir due to data quality limitations. However, a reduced form of the ERT data, namely the 
time series of average resistivity calculated for the three main reservoir layers, showed a clear 
and consistent increase in resistivity during the experiment and was a robust form of the data to 
use for coupled hydrological-geophysical inversion. Inversions were performed with models of 
increasing complexity that used the reduced form of the ERT data along with the gas 
composition data. Models with different discretization and dimensionality were considered, 
including a radial model, a model combining three one-dimensional (1-D) layers, and a 3-D 
model with three layers of finely meshed 2-D grids. These increasingly complex models allow 
for different flow characteristics of the reservoir to be examined with manageable computational 
requirements. While inversion of gas composition data alone does not give reliable results for 
reservoir properties in a simplified reservoir model, the electrical resistance data improved the 
inversion due to a large measurement footprint and direct link to gas saturation. A more 
computationally intense, 3-D forward model, built on the basis of the inversion results obtained 
with 1-D layers, provided some confirmation of the parameter estimates since the electrical 
resistance, CO2 gas mole fraction and tracer data were fit reasonably well. Preliminary inversion 
using an expanded 3-D model and newly implemented parallel computing capabilities showed 
that allowing for 3-D heterogeneity in each of the main geological layers substantially improved 
the fit to the data.  

In general, these findings show potential benefits of monitoring CO2 migration with geophysical 
data, as well as possible limitations due to poor data quality and resolution. One of the challenges 
of coupled hydrological-geophysical inversion is in correctly identifying and modeling all key 
parameters and physical processes controlling the different data sets. While integrating different 
types of data can result in an improved underlying model of the subsurface system, in practice it 
is often difficult to adequately fit all available data due to model errors. Other challenges arise 
from inadequate data coverage and high measurement noise at the great depths relevant to CO2 
sequestration sites, leading to non-uniqueness in parameter estimates. In addition, the inverse 
modeling approach requires many forward simulations that are computationally expensive, 
especially for 3-D models and subsurface systems involving potentially non-isothermal, multi-
component, multi-phase flow and transport, necessitating the use of parallel computing. 
However, as is shown in this work, successful application of the approach can be achieved 
through careful analysis and integration of complementary hydrological and geophysical data 
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sets, and the use of initially simplified conceptual models, followed by models with increasing 
complexity and computational demand.  

Further details of the material presented in this report were given by Doetsch et al. (2012a, 
2012b, 2012c, 2013) and Commer et al. (2013). 
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1. INTRODUCTION 

Geologic storage of carbon dioxide (CO2) is a promising approach to offset anthropogenic 
carbon dioxide emissions into the atmosphere that contribute to climate change. Deep saline 
aquifers have been identified as key target formations for storage due to their large spatial extent 
and high potential volumes. For the safe and efficient operation of underground CO2 storage, it is 
important to monitor the migration of the CO2 (Benson et al., 2005). Monitoring subsurface CO2 
distribution can help to identify leakage through faults and abandoned wells, so that remedial 
measures can be taken before contamination of potable groundwater occurs. Knowledge of the 
spatial extent of injected CO2 is also useful for assessing and updating pre-injection estimates of 
available storage volumes and refining models of subsurface flow properties. 

Crosshole geophysical methods could play a key role in integrated monitoring programs for deep 
CO2 injections and have recently been tested at a variety of pilot storage sites (e.g., Hovorka et 
al., 2006, 2011; Giese et al., 2009). Their advantage is the comparably high spatial resolution at 
the inter-well scale of tens of meters and the sensitivity to changes in bulk properties, such as 
supercritical-phase or gas saturation. Examples of successful geophysical monitoring of injected 
CO2 include seismic tomography (e.g., Ajo-Franklin et al., 2013; Daley et al., 2008), continuous 
active-source seismic monitoring (CASSM) (Daley et al., 2011), and electrical resistance 
tomography (ERT) (Bergmann et al., 2012; Carrigan et al., 2013). 

Crosswell electrical resistance monitoring for environmental applications in the shallow 
subsurface is a well-established technique (e.g., Daily and Ramirez, 1995; Ramirez et al., 1993; 
Slater et al., 2000) and, recently, fully automated systems for long-term monitoring have become 
available (e.g., Coscia et al., 2012). ERT monitoring of CO2 migration can build upon this 
knowledge base while developing field systems that are better suited for the hostile down-hole 
environment present in deep storage wells. ERT is useful for monitoring of CO2 due to the strong 
electrical resistivity contrast between highly conductive reservoir brine and practically non-
conducting supercritical or gas-phase CO2. Modeling studies have demonstrated the potential for 
ERT monitoring of CO2 sequestration projects (e.g., al Hagrey, 2012; Christensen et al., 2006; 
Ramirez et al., 2003). Successful CO2 field experiments with ERT monitoring have been 
reported from experiments in Nagaoka, Japan (Nakatsuka et al., 2010), Ketzin, Germany 
(Bergmann et al., 2012), and Cranfield, Mississippi, USA (Carrigan et al., 2013).  

Incorporating geophysical data, such as seismic and electrical resistance data, into hydrological 
investigations holds great potential for improved characterization of subsurface properties and 
processes, thanks to the high spatial coverage of geophysical measurements and their sensitivity 
to hydrological processes. Despite the growing popularity of such methods in recent years for 
monitoring subsurface processes, such as CO2 migration, it remains challenging to analyze 
geophysical data and to extract information that can be used quantitatively to inform 
hydrological models. For example, electrical resistance (ER) data are sensitive to the bulk 
properties of interest for monitoring CO2, but the data suffer from inherent resolution limitations 
(e.g., Ellis and Oldenburg, 1994), which are amplified by the harsh environmental conditions 
(e.g., high temperatures and pressures) that are found in deep reservoirs and lead to high noise 
levels. Furthermore, ambiguities arise in interpreting geophysical data that are difficult to resolve 
without additional information: electrical resistance data are sensitive to both the chemical 
composition and saturation of pore fluids, in addition to lithological heterogeneity; and seismic 
data are sensitive to the saturation and distribution of pore fluids, as well as to pressure variations 
and lithological heterogeneity.  
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Resolution limitations can be partly overcome by constraining geophysical inversions with 
structural information from borehole logs or other geophysical data. For example, in traditional 
ERT, including interfaces separating zones with strong resistivity contrasts is one piece of a 
priori information that dramatically improves the resistivity estimate of each zone or its 
evolution over time (see Section 3.3.3). Jointly inverting seismic and ERT data with structural 
constraints may be more beneficial than analyzing each data set independently (see Section 
3.3.2). The usefulness of geophysical data can be dramatically improved by systematically 
including hydrological data in the analysis. Conversely, since geophysical data are sensitive to 
changes in fluid distributions, they can be used to infer the underlying hydrological properties, 
such as the permeability and porosity, when analyzed in a framework that jointly integrates a 
variety of different data types simultaneously while accounting for complex flow and transport 
processes.  

The main goal of this work was to develop and test an approach for the coupled (joint) inversion 
of hydrological and geophysical data, which integrates the geophysical information directly into 
hydrological parameter estimation for improved prediction of CO2 migration in the subsurface. 
The approach is presented in Section 2. In Section 3, an in-depth case study is presented that 
evaluates how electrical resistance monitoring data, when used together with hydrological data in 
the coupled hydrological-geophysical framework, can help constrain models for simulating CO2 
migration at the SECARB pilot site located in Cranfield, Mississippi.  
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2. METHODS 

The following subsections describe the coupled hydrological-geophysical inverse modeling 
framework and the corresponding forward modeling capabilities. Problem-specific details of the 
methodology, such as those related to simulation of particular measurements, parameterization of 
the inverse problem, and the petrophysical relationships linking hydrological properties to 
geophysical properties are described in the corresponding sections of the studies presented 
below. Note that this study focused on coupled hydrological-geophysical processes without 
considering geomechanical effects. Including geomechanical processes and corresponding 
measurements (e.g., tiltmeter data or surface deformation derived from InSAR data) in the 
procedure would be a logical extension of this research.  

2.1 COUPLED HYDROLOGICAL-GEOPHYSICAL INVERSION FRAMEWORK 

The main goal of this work was to develop and test an approach for the coupled (joint) inversion 
of hydrological and geophysical data for improved prediction of CO2 migration in the 
subsurface. While the particular methods used depend on characteristics of the site of interest 
and the types of measurements that are available, the inversion approach includes these main 
components:  

1. A hydrological forward model that simulates flow and transport, such as that resulting 
from the injection of CO2 and/or tracers, and also simulates the corresponding time-lapse 
hydrological measurements  

2. A procedure for mapping the simulated hydrological properties onto the geophysical 
numerical grid (the hydrological and geophysical numerical grids are often different, 
including the grid block sizes and the total extent of the model regions, depending on the 
requirements of the methods used) 

3. Petrophysical models that relate the hydrological state variables (e.g., CO2 saturation, 
fluid density, temperature and pressure) to geophysical properties (e.g., elastic moduli or 
electrical resistivity)  

4. Forward models that simulate the geophysical measurements at the corresponding survey 
times  

5. An optimization algorithm that iteratively repeats steps (1) through (4), aiming to find 
estimates of the unknown parameters by minimizing the misfit between the measured and 
simulated hydrological and geophysical data. This procedure results not only in an 
estimate of the CO2 distribution in the subsurface, but also a calibrated hydrological 
model that can be used to better understand and predict CO2 migration. 

Building on previous work in which coupled hydrological-geophysical inverse modeling was 
performed for different applications (Kowalsky et al., 2004, 2005, 2008, 2011b), the approach 
was implemented in the inverse modeling framework iTOUGH2 (Finsterle, 1999a,b; 2004), 
which provided parameter estimation, parameter sensitivity, and uncertainty propagation 
capabilities to the general-purpose reservoir simulator TOUGH2 (Pruess et al., 1999) and which 
included capabilities for simulating geophysical measurements internally or by calling 
standalone executables. The mapping algorithm was based on a nearest neighbor interpolation 
that consisted of finding the TOUGH2 grid block that was closest to each geophysical grid block, 
resulting in a list of TOUGH2 grid blocks and their corresponding properties at a given time for 
the geophysical grid blocks. Since the geophysical grid was larger in some cases than the 
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TOUGH2 grid (see the second component of the inversion approach described in the previous 
paragraph), mapping exceptions were made for geophysical properties that were outside of the 
TOUGH2 model space (i.e., geophysical properties are assumed or inferred from site 
characterization data in those regions, and remain fixed during the simulation). Since 
petrophysical models depend on the methods being considered and site conditions, the user is 
enabled to specify the desired petrophysical models in iTOUGH2, whether for seismic properties 
(effective bulk and shear moduli) or electrical properties (effective resistivity). Various 
properties that are needed for the petrophysical models, such as the fluid densities, were 
calculated in TOUGH2 as a function of properties that vary during a simulation (e.g., pressure, 
temperature, salt mass fraction, and CO2 saturation). In addition, geometrical parameters of the 
numerical grid (such as reservoir width, as described in Section 3.2.3), can be considered 
unknown parameters and estimated in the inversion through use of the PEST protocol (Doherty, 
2008) in which certain aspects of the TOUGH2 mesh file are modified automatically during the 
inversion (Finsterle, 2010; Finsterle and Zhang, 2011). While a variety of optimization 
algorithms are available in iTOUGH2, the Levenberg-Marquardt method (Levenberg, 1944; 
Marquardt, 1963) was used in this study.  

Aside from its usefulness in performing inverse modeling, the coupled modeling framework is 
also useful for evaluating the sensitivity of different geophysical measurements for monitoring 
hydrological processes. For example, the feasibility of monitoring production from gas hydrate 
reservoirs using vertical-seismic profiling (VSP) measurements was evaluated by Kowalsky et 
al. (2010). The framework could be used for experimental design, for example, to determine the 
optimal placement of measurements and the survey frequency, and to determine which data types 
are likely to be most sensitive to the relevant parameters for the application of interest. 

2.2 HYDROLOGICAL FORWARD MODELING 

Hydrological forward modeling refers to the simulation of the hydrological state variable (e.g., 
pressure, fluid saturation, salinity, and temperature) in an aquifer based on initial conditions, 
boundary conditions, sinks and sources, and based on hydrological model parameters, such as 
permeability or porosity. The simulation process involves the solution of mass and energy 
balance equations for fluid and heat flow. Hydrological forward modeling in this work was 
performed by TOUGH2, which solves the isothermal and non-isothermal multi-phase flow in 
multi-dimensional fractured-porous media (Pruess et al., 1999). The equation-of-state module 
ECO2N (Pruess, 2005) was used for simulations of the Frio II experiment described in Section 
2.4 and module EOS7C (Oldenburg et al., 2004) was used for simulations of the Cranfield 
experiment in Section 3.  

While Pruess et al. (1999) provides a comprehensive description of the TOUGH2 program 
structure and execution, a short summary is given here. TOUGH2 uses a spatial discretization 
with an integral form of the balance equations on an unstructured grid. The first part of the 
computational workload involves assembling the Jacobian matrix and residual vector that 
constitute the system of equations to be solved for each discrete time step, where time is 
discretized fully implicitly using first-order backward finite differences. The main computational 
load results from solving the equation system, given in residual form, for the time-dependent 
primary thermodynamic unknowns for each grid block, using the Newton-Raphson iteration 
method.  
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Some of the inversions presented in this report benefited by the use of MPiTOUGH2 (Commer 
et al., 2013), which uses parallel versions of the TOUGH simulators, referred to as TOUGH2-
MP, that employ domain decomposition methods (Zhang et al., 2008) in order to distribute the 
workload of residual equation assembly and solution across multiple processes. While this study 
used spatial domain decomposition methods, algebraic decomposition of the arising system 
matrices is another option for the parallel forward modeling operator. TOUGH2-MP utilized the 
METIS partitioning algorithm developed by Karypsis and Kumar (1998) for the domain 
decomposition. Further, for the solution of the linear systems arising at each Newton-Raphson 
iteration step, the parallel iterative solver library AZTEC (Tuminaro et al., 1999) was used. 
Point-to-point message passing is needed to exchange properties between processes that share 
mesh elements at boundaries of the subdivided domain. While MPiTOUGH2 has preserved the 
choice of the original (direct and iterative) single-threaded TOUGH2 solvers (Moridis and 
Pruess, 1998), the BiCGSTAB (bi-conjugate gradient stabilized method) of the AZTEC library 
was used for parallel simulations. Additional message passing was internal to this solver. 

Other recent developments in the TOUGH family of codes were described by Finsterle et al. 
(2013). 

2.3 GEOPHYSICAL FORWARD MODELING 

This study implemented the capability to simulate seismic travel times (straight- and curved-ray 
algorithms), directly measured ERT observations (resistance values), and a reduced form of ERT 
data, namely, the average electrical resistivity value (or relative changes thereof) in a specified 
region or layer to enable modeling of time-lapse geophysical data sets within iTOUGH2 in the 
context of CO2 injection and storage. The average electrical resistivity is a reduced form of ERT 
data in which the average ERT value for a given region and survey time is calculated through 
geophysical tomography in a pre-processing step. As is discussed in Section 3.3.4, due to the 
high noise in the ERT data, this reduced form was found to be useful for the subsequent 
hydrological-geophysical inversions of Section 3.4. The code BERT (Günther et al., 2006) was 
used for all the ERT inversions of Section 3.3 except for those of Section 3.3.5 in which the 
geophysical modeling and imaging package EMGeo (e.g., Commer et al., 2011) was used. The 
code PSTOMO (Tryggvason, 2009) was used for curved-ray seismic travel time calculations in 
the short demonstration of Section 2.4. 

2.4 DEMONSTRATION FOR SEISMIC AND HYDROLOGICAL MEASUREMENTS  

A model was developed which simulates the injection of CO2 into a brine aquifer (Figure 1) to 
demonstrate the hydrological-geophysical modeling concept. After the onset of CO2 injection, 
hydrological measurements (pressure and saturation in two wells) and geophysical measurements 
(crosshole seismic travel times for a fixed source and receiver) were simulated based on two 
monitoring wells that were spaced 10 m apart. A coupled hydrological-geophysical simulation 
resulted in simulated hydrogeological-geophysical data that showed sensitivity to changes in the 
reservoir caused by the injection of CO2 (Figure 3). It is interesting, though not surprising, to 
note that the sensitivity of the seismic travel time to the CO2 front critically depends on the 
petrophysical model.  

A coupled hydrological-geophysical model (Figure 3) was also developed for simulating a small-
scale Frio II pilot experiment in which supercritical CO2 was injected into a brine formation 
while hydrological and seismic measurements were performed (Kowalsky et al., 2011a). More 
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specifically, CASSM data were collected in a crosswell configuration using a fixed source and 
sensors, allowing for the continuous monitoring of seismic waveforms at a high temporal 
sampling rate (Daley et al., 2008). In addition to the CASSM data, CO2 saturation in an 
observation well was measured. Compared to a previous study in which the experiment and 
measurements were modeled in a loosely coupled fashion (Daley et al., 2011), this study found 
that an improved match between the measured and simulated observations could be obtained 
when the models were fully coupled, and this resulted in a refined understanding of 
heterogeneity and CO2 migration at the site.  

Results in this section were intended to demonstrate the seismic capabilities. The final analysis 
of the Frio II coupled modeling study is still ongoing.  

 
Figure 1: Schematic of the problem used to demonstrate coupled hydrological-geophysical modeling. This 

model is a modified version of sample problem rcc3 from Pruess (2005), which simulated the injection of CO2 
into a brine aquifer. A CO2 injection well fully penetrated a homogeneous, isotropic, infinite-acting aquifer of 

10 m thickness. Hydrological measurements (pressure and saturation) and geophysical measurements 
(crosshole seismic) were simulated based on two observation wells 5 and 15 m from the injection well, 

respectively. 
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Figure 2: Example of measurements that can be modeled in a coupled hydrological-geophysical simulation. 
The simulated pressures (left) and saturations (middle) at two observation wells and the crosshole seismic 
travel times (right) are shown as a function of elapsed time since the start of the CO2 injection. The seismic 
response (right) is shown for two cases in which the Gassmann equation was used to calculate the effective 
velocity with the bulk modulus of the CO2-brine mixture calculated assuming a homogenous distribution 

(Reuss average, solid line) and a patchy distribution (Voigt average, dashed line).  

 



Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration 

11 

 

Figure 3: 2-D hydrological model for Frio II experiment with overlapping geophysical grid for simulating 
seismic travel times. The right and left boundaries of the hydrological model are outside of the pictured 

region.  

 

 
Figure 4: Example of simulated (solid lines) and measured (symbols) CO2 saturation (left side) and seismic 

travel times (right side). 
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3. CRANFIELD STUDY 

The goal of this study was to evaluate how time-lapse ERT data, when combined with 
hydrological data in a coupled hydrological-geophysical modeling framework, can help constrain 
simulations of CO2 migration for the SECARB pilot site located in Cranfield, Mississippi. After 
describing the field site, injection experiment, and various data sets that were collected (Section 
3.1), and providing some details on the inversion components (Section 3.2), time-lapse ERT data 
with structurally unconstrained and constrained ERT inversions (Section 3.3) was analyzed in an 
effort to identify a reliable form of the data that can help calibrate flow and transport models. 
ERT-derived changes in subsurface electrical resistivity was used along with gas composition 
data for hydrological-geophysical inversion (Section 3.4), followed by a discussion and 
conclusions from the Cranfield study in Sections 3.5 and 3.6, respectively.  

3.1 FIELD SITE AND CO2 INJECTION EXPERIMENT 

3.1.1 SECARB Cranfield Pilot Site 

The SECARB Cranfield pilot site (~20 km east of Natchez, Mississippi) was chosen for a large 
scale (1 M tonne) CO2 injection into a brine-filled reservoir at ~3,200-m depth. The injection 
interval is a segment of the Lower Tuscaloosa Formation referred to as the Tuscaloosa D/E sand. 
This unit consists of relatively permeable fluvial sandstones and conglomerates. The system is 
described as having fluvial point-bar and channel deposits by Lu et al. (2012b), who found that 
mineral reactions during CO2 injection were minor over short time periods (months) and brine 
chemistry remained largely unchanged. The salinity of the reservoir brine is ~155,000 mg/L. 

The target formation was accessed by one injection well (F1) and two observation wells (F2 and 
F3). Around the injection well, the Tuscaloosa D/E formation dips 2 degrees toward the east, and 
the two observation wells are located down-dip at distances of ~70 m and ~100 m (see Figure 5). 
The ground surface at F2 (96 m above mean sea level) was used throughout this study as depth 
reference, as was done in Ajo-Franklin et al. (2013). 

 
Figure 5: (a) Location of the Cranfield site (red dot) in Mississippi. (b) Photograph of site showing injection 

borehole 31F-1 (F1) and observation boreholes 31F-2 (F2) and 31F-3 (F3) (Ajo-Franklin et al., 2013). 
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3.1.2 Borehole Logging Data 

Pre-injection characterization of the site included geophysical borehole logging as well as whole 
core and sidewall samples (see Butsch et al., 2013). Downhole spontaneous-potential (SP) data 
(Figure 6a) clearly show the depth interval of the Tuscaloosa formation, which confirms the 2% 
dip toward the east as well as the reservoir thickness of approximately 24 m (depth of 3,176–
3,200 m at well F2). The SP logs also indicated an interruption of the Tuscaloosa sands at depth 
3,192 m. Lu et al. (2012b) identified this thin layer as a calcite-rich shale baffle, which has much 
lower porosity and is much tighter than the Tuscaloosa sands. The shale baffle is thus unlikely to 
support considerable flow and transport and possibly separates the reservoir into two largely 
unconnected layers although continuity of the feature outside of the plane formed by the three 
wells considered in this study is difficult to verify. 

The mean of the porosities derived from sonic logs and those derived from neutron-neutron logs 
were used to get porosity-depth functions for each of the three wells. The depth axis of the F1 
and F3 logs were then shifted to account for the 2 degree formation dip (Figure 6c) and a unique 
porosity-depth function was derived by taking the median of the porosities for the three wells at 
each depth. Based on this porosity function (gray line in Figure 6d), the reservoir was divided 
into three depth sections (black line in Figure 6d): the two bottom sections with porosities greater 
than 20% and the third one at the top with porosities on average below 20%. The average 
porosities for those layers—from top to bottom—are 19.6%, 23.9% and 22.9%. Porosity 
variations within each layer are ~3%, but uncertainty from different averaging techniques are 
only ~0.2%. The average layer porosities were used to populate the meshes for the CO2 
migration simulations described in subsequent sections. 

 

 

 

Figure 6: Select geophysical borehole logging data. (a) Self-potential (SP) and (b) sonic log in borehole F2. (c) 
Porosity based on sonic and neutron–neutron data in the three boreholes (depths are dip-corrected to F2 

depth) and (d) median porosity of the three boreholes and averages for a 3-layer model. Layer thicknesses 
and porosities for a division into three layers are shown to the right. 
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3.1.3 CO2 Injection and Hydrological Monitoring Data 

CO2 injection in borehole F1 was initiated on December 1, 2009 and all subsequent time 
references are relative to that date. The initial injection rate was 3 kg/s, which was increased to 
5.7 kg/s on day 18 (December 18) and stayed stable until day 30, which marks the end of the 
main period of interest here. It is assumed that the injected fluid contained 98–99% CO2 and 1–
2% CH4 (methane). On day 3, 40 kg of sulfur hexafluoride (SF6) tracer was co-injected with the 
CO2 and CH4 over a period of a few minutes. With reservoir temperatures and pressures around 
126°C and 31.9 MPa (319 bar, 4627 psi), respectively, the CO2 and CH4 existed as a mixed 
phase in supercritical form. Throughout the description of this study, the term gas and gas 
saturation is used to describe this supercritical CO2 and CH4 phase and its saturation. 

The key part of the hydrological monitoring consisted of continuous gas composition analysis. 
The gas phase was collected using a U-tube sampler (Freifeld et al., 2005; Lu et al., 2012a), with 
one sampler in each of the two observation wells F2 and F3. The samples were analyzed in real 
time using an onsite mass spectrometer (Doughty and Freifeld, 2013; Lu et al., 2012a). The U-
tube system allowed continuous measurement, and samples were analyzed 1–3 times per hour. 
The borehole perforation or the U-tube intake was initially clogged so that no measurements 
could be taken at first, but the arriving CO2 apparently lubricated the system and allowed high-
quality measurements thereafter. The initial arrival of the gas phase was thus not fully captured 
by the sampling system. The clogging and CO2 lubrication occurred in both observation 
boreholes (F2 and F3). 

The mole fractions in the gas phase measured in F2 and F3 are shown in Figure 7. The first 
observation in Figure 7a is that the methane concentration is falling at the beginning of the time 
series, which implies that the methane concentration was higher at earlier times and actually 
arrived before the CO2. This can be explained by dissolved methane being swept out of the liquid 
phase due to co-solubility limitations, when the injected CO2 starts to dissolve (Doughty and 
Freifeld, 2013). In this case, the reservoir brine must be close to full methane saturation prior to 
injection. High methane concentrations during the pre-injection period are likely due to the 
reservoir being in the water leg of an anticlinal hydrocarbon reservoir. Possibly, some free-phase 
methane even existed in the reservoir prior to injection. In either case, a small methane gas phase 
traveled ahead of the injected CO2. The effect of a leading methane gas phase is confirmed by 
flow and transport simulations (see Doughty and Freifeld, 2013 and Section 3.4). 

Figure 7a also shows two distinct CO2 and CH4 arrivals in each well. The contributions to these 
time series were interpreted as coming from different flow paths, probably two unconnected 
depth sections (e.g., two layers separated by an impermeable shale baffle, as described above). 
The methane gas phase appears to arrive first through each of these flow paths, but the peak of 
the first arrival is missing in the data due to the clogged U-tube system. The first methane arrival 
is followed by the arrival of the CO2 through the same flow path at days 11 and 15 in F2 and F3, 
respectively. The CO2 gas mole fraction then decreases as the methane arrives through the 
second flow path and increases for the remainder of the time series as the CO2 also arrives 
through this second flow path at days 14 and 17 in F2 and F3, respectively. The SF6 tracer in 
Figure 7b shows the same double arrival, with the first arrival being only partly measured due to 
the initial U-tube problems. 

The complicated gas-phase arrivals and the interplay between methane and CO2 illustrate the 
complexity of the mechanisms that need to be considered. These complexities, especially the 
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critical role of methane, have strong implications for flow and transport simulations that need to 
include brine, CO2, methane and tracer in the liquid and gas phases, with precise accounting of 
phase-partitioning effects. 

 

 
Figure 7: Gas composition monitoring data measured with a U-tube device in observation wells F2 and F3. (a) 

Mole fraction of CO2 and CH4 and (b) SF6 tracer injected with the CO2 on day 3. Early time data is missing 
because the U-tube device was initially clogged; it was apparently freed by the arriving CO2. 

 

3.1.4 Geophysical Monitoring Data 

The geophysical monitoring planned for the Cranfield site included continuous active source 
seismic monitoring (CASSM, Daley et al., 2007) and ER surveys. In addition, cross-well seismic 
tomography data were recorded prior to injection and after over 9 months of injection (Ajo-
Franklin et al., 2013). Unfortunately, the CASSM receiver system failed after about one month 
of operation, just before the injection of CO2 started, and could not be repaired.  

While the goal was to test an approach for coupled inversion of hydrologic and geophysical 
monitoring data in the context of CO2 monitoring, it was necessary to gain a good understanding 
of the collected geophysical data to learn about its quality and sensitivity to subsurface properties 
at the site. Therefore, significant efforts were made in processing and analyzing the seismic and 
ERT data. 

Collection and Analysis of Crosswell Seismic Tomography Data  

Crosswell seismic data were acquired between F1–F2–F3 before the start of the CO2 injection 
and a second data set between F2 and F3 was acquired after ~300 days of CO2 injection. Doetsch 
et al. (2012a) and Ajo-Franklin et al. (2013) found that between observation wells F2 and F3, the 
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gaseous CO2 was mostly concentrated in two layers in the lower part of the reservoir. These two 
zones correspond to the two high-porosity intervals shown in Figure 6d. 

Described in the remainder of this subsection are results presented by Doetsch et al. (2012a). The 
baseline data were inverted using an Occam’s type inversion with an assumed travel time error 
of 1.5% and travel times in the 7–21 meters per second (m/s) range. A homogeneous 4,000 m// 
starting and reference model was used with a stochastic regularization and integral scales of 4 
and 10 m in vertical and horizontal direction, respectively. The baseline seismic tomograms 
revealed nice structure (Figure 8a), with the saline aquifer characterized by low velocities, and 
with good agreement with the sonic logs (Figure 8b). The Lower Tuscaloosa formation can be 
identified by the low velocities between depths of 3,180 and 3,205 m. 

 

 
Figure 8: Seismic velocity distribution from inversion of baseline (pre-injection) crosswell data (left side), and 

comparison of inversion with (smoothed) sonic logs at the three observation wells (right side). 

 

The second data set collected between F2 and F3 was used to invert for CO2 induced changes in 
velocity, using the baseline result as the start and reference model, resulting in the changes 
shown in Figure 9a. Other types of inversion of the seismic data were performed, including a 
single parameter inversion, which revealed a decrease in seismic velocity in the region of the 
CO2 plume of around 215 m/s (Figure 9b). Joint inversion of the seismic and ERT data at a late 
survey time was also performed (see Section 3.3.2), resulting in a more focused CO2 plume than 
in individual inversions.  

Since the seismic data were only collected before and again long after the start of injection, they 
were ultimately not included in coupled hydrological-geophysical inversions.  
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Figure 9: Inversion for CO2-induced-changes in seismic velocity, from baseline to after nearly 10 months of 
injection, (a) using stochastic regularization to estimate a change in velocity at each point and (b) estimating 
only a single value for the change in velocity within the plume region (where the plume region is defined as 

the pixels within (a) within which the velocity decreases by more than 160 m/s). 

 

Collection of Electrical Data 

The ERT monitoring system was installed with electrodes in wells F2 and F3. Carrigan et al. 
(2009, 2013) designed an ERT acquisition system for the specific conditions and monitoring 
target at Cranfield. The high temperature of 126°C and pressure of 31.9 MPa, and the low pH of 
3 required special design and installation. A total of 21 stainless steel electrodes were mounted 
outside the fiberglass casing, with 14 electrodes at 4.5 m spacing in borehole F2 and 7 electrodes 
at a 9.0 m vertical spacing in F3. Insulated and armored cables ran from each electrode to a fully 
automated and remotely controlled acquisition system at the surface (Carrigan et al., 2009, 
2013). 

ERT monitoring was initiated on November 25, 2009, 5 days before the start of the CO2 
injection. The computer controlled acquisition system recorded data continuously, following a 
four-electrode measurement scheme with current and potential electrodes sweeping through both 
boreholes (Carrigan et al., 2013). Full reciprocal measurements (switching current and potential 
electrodes) were included in the measurement sequence for noise estimation. ERT monitoring 
continued for ~300 days (until September 2010), with ~7,000 measurements acquired per day. 

Pre-processing of Electrical Data  

Initial quality control and data analysis indicated that the general noise level was high, with 
many measurements showing unrealistic resistance values. The long cables, deployed outside of 
casing, and the unfavorable conditions at depth are suspected to be the main reasons for the 
strong signal disturbances. However, thanks to the high temporal acquisition rate and large 
number (~1,300) of measurement configurations, detailed analysis and filtering of the raw data 
allowed for useful information to be extracted, as is described next. 
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Time series of resistances for each measurement configuration were assembled to assess data 
quality. From these time series, a baseline resistance reading of the undisturbed brine-filled 
reservoir was extracted by averaging data from ±5 days of the beginning of the CO2 injection. 
The baseline apparent resistivity a(0) was then calculated for each measurement configuration 
by multiplying the resistance with the geometric K factor, which depends on the relative 
distances between the electrodes (see, e.g., Günther, 2004, p. 45). The apparent resistivity 
corresponds to the resistivity of a homogeneous earth that would yield the same measurement 
value and should thus not be far outside the expected subsurface resistivity range, assuming 
moderate resistivity contrasts within the reservoir. This possible range was defined as 0.001 Ωm 
< a(0) < 100 m, with the expected reservoir resistivity between 1 m and 10 m. All 
configurations outside this 0.001–100m range were excluded from further processing. 

All time series were then down-sampled by averaging the data within 2-day time windows and 
normalized by the baseline apparent resistivity. Additional filtering concentrated on these 
relative a(t)/a(0) variations with time t for each measurement configuration. Visual inspection 
of the time series showed that relative variation of all smoothly varying time series did not 
exceed a factor of 2, so all time series with values outside the range of 0.5 < a(t)/a(0) < 2 were 
excluded. While this range might seem narrow, inversion tests with a wider a(t)/a(0) cut-off 
range gave poorer results and the additional data needed to be down weighted in order to fit the 
data to the assumed error level. 

While comparing resistances of reciprocal measurements is often performed to estimate the error 
level of individual measurements (e.g., Slater et al., 2000) and to exclude poor data, this study 
found that for this specific data set, corrupted data had to be removed first. Taking the average of 
reciprocal measurements and judging the data error on the basis of the difference between 
reciprocal data often compromised the high-quality data. Instead, outliers were first removed, 
using the criteria discussed above. The reciprocal measurements were then matched wherever 
they existed and the average of the two measurements was used for further processing. The 
reciprocal errors were added to a baseline error of 5% and the standard deviation of variations 
during the baseline averaging. These error estimates, with a median of 11.4%, were used in the 
ERT inversions. 

The preprocessed a(t)/a(0) time series in Figure 10 show a coherent picture of increasing 
apparent resistivities with time. Most time series were stable with little change around the 
baseline value for the first 15 days. Apparent resistivities then increased strongly for about 10 
days, indicating an increasing resistivity within the reservoir due to increased gas saturation. 
After day 25, apparent resistivities were mostly stable, but continued to rise slightly. These 
normalized apparent resistivities can give a qualitative impression of the development of 
reservoir resistivity over time, but only ERT inversions can quantify these resistivity changes. 
Integrated analysis incorporating flow and transport modeling can further link the electrical data 
with the hydrological properties. 
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Figure 10: Time series of electrical resistance measurements using various electrode combinations in wells F2 

and F3, normalized by the pre-injection resistances. The increase in measured resistances indicates a 
developing CO2 and CH4 gas phase between the measurement boreholes F2 and F3. 

 

3.2 INVERSION COMPONENTS 

3.2.1 Flow and Transport Simulations 

As described in Section 2.2, for the flow and transport simulations, this study used the general-
purpose numerical simulator TOUGH2 (Pruess et al., 1999) that included capabilities for 
modeling non-isothermal multi-phase, multi-component fluid flow in porous and fractured 
media. It used flexible finite-volume meshes with a multi-phase extension of Darcy’s law, which 
included relative permeability and capillary pressure effects. The current case study utilized the 
TOUGH2 equation-of-state module EOS7C (Oldenburg et al., 2004) for multi-component gas 
mixtures in methane–carbon dioxide (CH4–CO2) systems, with or without an aqueous phase. 
EOS7C included an accurate solubility formulation to model flow and transport of gas and 
aqueous phase mixtures over a wide range of pressures and temperatures, including those in deep 
high-temperature reservoirs considered for CO2 sequestration. The supercritical CO2 was 
modeled as a non-condensible gas. EOS7C modeled the five components: water, brine, CO2, 
methane, and a tracer. Each of these components was partitioned into an aqueous and a 
gas/supercritical phase according to the local thermodynamic conditions. All components were 
used, including the brine properties measured at the field site (salinity of ~155,000 mg/L). The 
reservoir brine was initially methane-saturated with no methane gas phase existing. , This study 
assumed non-isothermal effects were negligible for the modeling, and neglected molecular 
diffusion, which was not significant on the relatively short time scale of 30 days that was 
considered. 

The model development (Section 3.4) in this study aimed to capture the key features of the 
system with models that are computationally efficient and only as complex as is warranted. 
Therefore, alternative conceptual models were built based on the supporting geological 
information and these models were calibrated by comparing the hydrological measurements 
(e.g., CO2 mole fraction in the gas phase) directly with the modeling output. All models 
considered here were composed of three layers, based on the borehole-log porosity shown in 
Figure 6. These meshes differ in the discretization of the horizontal plane, while the cell sizes in 
the main lateral coordinate (radius or x, depending on the model) were the same for all meshes. 
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The meshes were finely discretized around the injection borehole, correctly implementing the 
borehole radius of 11 cm. Lateral grid size increased with distance from the injection well, to a 
cell width of 1 m that was used for all cells between the observation wells F2 and F3. Cell size 
increases further beyond F3, giving a total of 188 cells covering the 1,000 m total grid extent. 
No-flow boundary conditions were applied at the top and bottom of the reservoir and a constant 
pressure was maintained at the maximum radius or lateral distance. Modeling tests showed that 
the 2 degree geological formation dip does not influence the flow and transport simulations and 
it is thus neglected. The thin but tight shale baffle layer around depth 3,192 m (Figure 6) was 
included in the model as a thin aquitard by not allowing vertical flow between the two lower 
layers. However, vertical flow was permitted between the two top layers. CO2 was injected into a 
single borehole cell connected to the two lower model layers, allowing for CO2 partitioning into 
each layer according to the relative injectivity of each layer. While the three wells penetrate all 
layers, no vertical flow was allowed in the observation wells. 

Models with different lateral discretizations that represent different dimensionalities were 
considered. As described in Section 3.4, a radial model was considered first, followed by a 
model combining three 1-D layers and finally a 3-D model with three layers of finely meshed 2-
D grids. The different meshes not only represent different complexities, but they also help to 
understand the flow characteristics of the reservoir. For example, the reservoir volume that can 
be reached within a certain distance from the injection well in a radial flow system was much 
larger than in narrow flow channels represented by 1-D models. This relates directly to the long-
term operation of a CO2 injection facility, for example, because the amount of CO2 that can be 
stored underground depends on the volume of accessible pore space. 

3.2.2 Inversion of Time-Lapse ERT Data for use in Coupled Inversion 

For ERT data to be incorporated in the fully coupled inversion, one can either (1) invert the ERT 
data first to produce spatial distributions of changes in subsurface resistivity at various times or 
(2) directly include the ERT data in the coupled inversion. In both cases, the subsurface 
resistivity needs to be linked to gas saturation through a petrophysical function. While the second 
option is generally preferred (Commer et al., 2012), the first option was chosen due to data 
quality limitations.  

The time-lapse processing approach was based on the ratio inversion scheme introduced by 
Daily and Owen (1991). The input data to the inversion was the time-series of normalized 
apparent resistivities a(t)/a(0), discussed in Section 3.1.4 and shown in Figure 10. Normalizing 
the input apparent resistivities with their pre-injection values removes the static error 
contributions that are a combination of modeling errors and systematic measurement errors due 
to ground coupling problems or geometrical errors. In cross-borehole ERT monitoring with 
permanent installations, these static errors are typically much larger than the time-varying errors 
of each time-lapse data set (e.g., Doetsch et al., 2010). 

The inversion of the normalized apparent resistivities started with a homogeneous half space of 1 
m resistivity. The models that resulted from the ratio inversions show the spatial distribution of 
relative changes in electrical resistivity of the subsurface at a given time. Model values above 1 
m indicate an increase in resistivity; values below 1 m indicate a decrease. 

For a hydrogeological interpretation and comparison with the CO2 migration simulation, these 
changes in resistivity were translated into aqueous saturation using Archie’s law (Archie, 1942), 
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, (1) 

which relates bulk resistivity  with the resistivity of the water (brine) w, porosity ϕ, aqueous 
saturation Sw and the empirical exponents m and n. The assumption behind Archie’s law is that 
all electric current flows through the aqueous phase. The grains, their surfaces and the gas phase 
are thus modeled as non-conductive. This assumption is reasonable for this field site, where the 
brine resistivity is very low (~1 m) and the target formation consists of sandstone that is not 
expected to support considerable surface conductance. Laboratory measurements on Berea 
Sandstone cores have also demonstrated the validity of Archie’s law in brine (1 m) – CO2 
systems (Onishi et al., 2006). While other sources can be excluded, it is possible that surface 
conductivity is supported by the relatively high surface area due to a high chlorite fraction in the 
Tuscaloosa D/E formation (Landrot et al., 2012). Electrical measurements on cores from 
Cranfield would be an interesting subject for future research. 

When solving Equation1 for saturation Sw, the uncertainty is high, due to uncertainties in the 
other parameters. In the case of a resistivity time series (t) from time-lapse inversion, Equation 
1 can be simplified to 

, (2) 

with gas saturation Ssc(t) and assuming an initial water saturation of Sw(0)=1, which is assumed 
to be valid for the experiment considered here. Equation 2 also assumes that ρw does not change 
with time. Although dissolving CO2 has been shown to decrease the water resistivity (e.g., 
Dafflon et al., 2013), no significant effect is expected at the reservoir conditions of this field site. 
Given these assumptions, the only uncertainty in the petrophysical relationship is in the 
saturation exponent n, which in consolidated sands is commonly reported to be close to 2 (e.g., 
Archie, 1942). Uncertainty of 10% in n would result in uncertainty of 10% in the estimated 
saturation. 

3.2.3 Parameterization and Optimization Details  

The simulation of flow and transport and of the corresponding gas composition data (Section 
3.1.3) and ERT-derived electrical resistivities were realized in the inversion framework 
iTOUGH2 (Finsterle, 1999b). The ERT-derived electrical resistivities were incorporated through 
the petrophysical function in Equation 2. iTOUGH2 allows estimation of unknown hydrological 
parameters, which can be groups of cells (e.g., layers) in the TOUGH2 mesh or distributed 
parameter fields (e.g., Kowalsky et al., 2005). In addition, geometrical parameters, such as 
reservoir width, can be considered unknown parameters that are estimated in the inversion 
through use of the PEST protocol (Finsterle, 2010; Finsterle and Zhang, 2011) in which certain 
aspects of the TOUGH2 mesh file are modified automatically during the inversion. 

In the inversions discussed here, the parameters of interest are reservoir permeability and 
effective reservoir width. As mentioned above, three-layer models were used with the main 
parameters being horizontal and vertical permeability in these layers. Layer-wise 
parameterization was chosen over fully distributed parameter fields to avoid over-
parameterization and the associated increased parameter uncertainty. An additional parameter of 
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interest was the effective reservoir width, which represents the lateral width accessible to the 
injected CO2. This effective width was related to the size of the flow channels in the fluvial 
deposits of the reservoir. In the coupled inversion, the Levenberg–Marquardt minimization 
algorithm was used to optimize the objective function 

 

, (3) 

 

where Φres and Φgc are the resistivity and gas composition misfit functions. The Φres value is 
given by 

, (4) 

 

with the measured data di(t) at time t, its simulated equivalent si(t) and the assumed measurement 
uncertainty ε. di(t) are the ERT inversion-derived layer resistivities, i = 1, 2, 3 for the three layers 
and 0 ≤ t ≤ 30 days. Φgc is defined analogous to Φres, only that di(t) are the CO2 mole fractions, i 
= 1, 2, for the two observation wells and 11 days ≤ t ≤ 30 days. 

The optimization started using only the ERT-derived electrical resistivities, thus minimizing Φres 
only and estimating only the reservoir width. In subsequent steps gas composition data was 
included and the full objective function Φ was minimized. With this step-wise increase of 
complexity this study hoped to increase chances of convergence to a stable minimum in the 
misfit function, honoring both data sets and obtaining accurate parameter estimates. 

3.3 ANALYSIS OF TIME-LAPSE ERT DATA  

The ERT data was analyzed in a variety of ways in the process of determining the best form to 
use for the coupled hydrological-geophysical inversion. This section shows different ERT 
inversion results, including joint inversion with seismic as a structural constraint, inversions for 
1-D and 2-D parameter distributions using different regularizations and constraints, and some 
more recent inversions for 3-D parameter distributions. The results of the ERT time-lapse 
inversion of Section 3.3.4 are then used in Section 3.4 for coupled hydrological-geophysical 
inversion. 

3.3.1 Mesh Generation and Parameterization 

In the following sections (excluding Section 3.3.5) the ERT data is inverted in 3-D using the 
versatile finite-element inversion program BERT (Günther et al., 2006, www.resisivity.net) with 
unstructured tetrahedral meshes. These meshes are designed to include arbitrary electrode 
positions and geometries, such as layer boundaries. Three different meshes were built, all with a 
domain size of 100 m × 50 m × 100 m and about 30,000 cells. These meshes were refined and 
extended outwards for the ERT forward calculations. 

The first of the three meshes included no internal structure except for the electrode positions. The 
second mesh included the top and bottom of the reservoir as interfaces, as defined by the self- 
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potential borehole logs. The third mesh included two additional interfaces within the reservoir 
based on the porosity borehole logs (Figure 6d), splitting the reservoir into three zones that might 
have different properties. During the ERT inversion, regularization was applied in the form of 
spatial smoothing. 

3.3.2 Structural Joint ERT and Seismic Inversion (for only two times) 

A structural joint inversion of the crosswell seismic and ERT data was performed in early stages 
of the project (Doetsch et al., 2012a). The structural joint inversion approach was first developed 
by Gallardo and Meju (2004) and is based on penalizing deviations from zero of the cross-
gradient function  = del(m1) x del (m2) between models m1 and m2. This ensures structural 
similarity, while not assuming any specific petrophysical relationship between the model 
parameters. As in the individual time-lapse seismic inversion, this study inverted for changes in 
seismic velocity. Due to the availability of only one time-lapse seismic data set (pre-injection 
and post-injection surveys), a single ERT data set was created by averaging 20 days of data after 
the system reached steady state. The joint inversion results showed a more focused CO2 plume. 
As mentioned previously, since the seismic data were only collected before and long after the 
start of injection, they were ultimately not included in coupled hydrological-geophysical 
inversions of subsequent sections. 

 
Figure 11: Inversion of seismic and ERT data for changes in seismic velocity and resistivity from baseline to 9 

months after the start of CO2 injection. a) Independent (individual) inversions of each data set. b) Joint 
inversion of both data sets using cross-gradient structural constraint.  

 

3.3.3 Smooth ERT Inversion for 60 Times 

Next the ERT data were inverted using each of the three meshes described in Section 3.3.1. The 
time-lapse apparent resistivity ratios a(t)/a(0) were inverted for 60 two-day periods from 0 to 
120 days. The inversion for each time frame started with a homogeneous 1-Ωm model. These 
models were then updated iteratively until the model explained the data to the assumed error 
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level or until the data misfit could not be further decreased. The changes in the final models from 
the 1-Ωm baseline correspond to relative changes in resistivity as a result of CO2 injection. 

A smoothing operator with an anisotropy factor of 0.2 (five times stronger smoothing in 
horizontal direction) was applied to stabilize the inversion and honor the layered stratigraphy at 
the site. This regularization was disconnected across the interfaces in Models 2 and 3 to allow 
independent resistivity variations in the different layers. 

 

 
Figure 12: Example time-lapse ERT inversions at 25 days (top) and 99 days (bottom) after the start of CO2 
injection. ERT inversions performed using no spatial constraints are shown for the two respective times (a 
and d), as are inversions in which the aquifer was decoupled from the overlying and underlying reservoir, 

with the aquifer assumed to be composed of one layer (b and e) or three layers (c and f). Results are plotted in 
relative changes to the baseline resistivity distribution. Note that the expected CO2 flow is from left to right. 

 

Figure 12 shows the inversion results for 25 and 99 days after the beginning of the CO2 injection. 
Inversions with all three meshes show the increase of resistivity due to the gas phase occupying 
the pore space, but there were strong differences in the distribution of resistivity changes. The 
inversion without any spatial constraints and stationary regularization (Figure 12a and d) does 
not focus the resistivity changes in the reservoir region, but they were rather smeared over a 
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larger depth range. This smearing was due to the regularization that prefers smooth models to 
strongly varying resistivity distributions. This problem was resolved by including the top and 
bottom of the reservoir in the mesh (Figure 12b and e). The abrupt change across the reservoir 
boundary was here explicitly allowed and although changes outside the reservoir were allowed in 
the inversion, they were not reinforced by the data. The three-layer reservoir models (Figure 12c 
and f) show similar features as the one-layer models, but additionally illustrate larger changes in 
the lower than in the upper part of the reservoir. As the increase of resistivity was associated with 
increasing gas saturation, the larger changes in the lower part indicated higher CO2 and CH4 
accumulation in this region. 

While these inversion results illustrate the different changes of resistivity with depth, they appear 
inadequate to image the horizontal CO2 propagation in a detailed manner. The CO2 moves 
outwards from the injection well F1 at x = 0 m and is thus expected to move toward higher x 
values (from left to right) in Figure 12. Instead, stronger resistivity anomalies were shown close 
to the observation well F3, and the lateral distribution of the resistivity anomalies did not change 
much during the experiment. The failure in imaging the lateral movement of the CO2 and CH4 
was attributed to the limited data quality and the ERT sensitivity distribution for this data set. 
The ERT sensitivity pattern for crosswell experiments was a complicated function of the relative 
locations of the involved electrodes, but in general it was high close to the observation wells and 
low in the center between these wells. 

3.3.4 Single-Parameter ERT Inversion for 60 Times 

Due to the inability to adequately image the lateral gas movement, it was decided to drastically 
reduce the number of unknowns in the inversion and invert for a single resistivity value for each 
of the three reservoir layers for each time step. This approach reduced the number of parameters 
for each inversion (at each of the 60 time steps) from 30,000 (one resistivity value for each 
model cell) to four, which included the resistivity outside the reservoir. With only four 
unknowns, there was no need for regularization during the inversion, because the regularization 
was implicit in the formulation of the inverse problem. 

The same apparent resistivity ratios were inverted as in the smooth inversions, using the three-
layer mesh and “single parameter” constraints in the BERT inversion code. At the end of the 
inversions, the data were fit to the same assumed error level as in the smooth inversions, 
indicating that this parameterization was a reasonable alternative and that perhaps the data 
cannot provide higher-resolution information, at least with the assumption of 2-D parameter 
distributions made for the results in Section 3.3.3. 

Figure 13 shows the resulting resistivity time series from the single-parameter inversions for the 
three layers (solid lines) and compares them with the average resistivities for these layers from 
the smooth inversion (dashed and dotted lines). All inversion results indicate that the change in 
resistivity was significantly smaller in the top layer (black) compared to the middle (red) and 
bottom (blue) layers. The magnitude of the change, however, was underpredicted by almost a 
factor of two in the unconstrained inversion (dotted lines in Figure 13) for the two lower layers. 
The constrained smooth inversion that includes the layers (dashed lines) finds slightly larger 
changes than does the unconstrained inversion. However, changes in resistivity in all smooth 
inversions were still strongly underpredicted compared to the single parameter inversions. This 
underprediction of change in resistivity was attributed to the regularization and the limited data 
quality. The single parameter inversion does not suffer from the regularization problem and thus 
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gives the best estimate of average change in resistivity for each layer. Therefore, the single 
parameter inversion results were used as input for the coupled modeling and inversions in 
Section 3.4. 

 

 

 
Figure 13: Change in resistivity, normalized by baseline resistivity, inferred from time- lapse ERT inversions. 

The ERT inversion types are distinguished by line style, colors indicate the different layers. The time series 
for the unconstrained inversion case was obtained by averaging the estimates in all pixels within the aquifer 
region at each time (see Figure 12a and d). The constrained inversion case corresponds to the average of the 
pixels in each of the layers in the three-layer case (see Figure 12c and f). The single parameter inversion used 

the same mesh as shown in Figure 12c, but only inverted for one parameter for each layer and time-step. 

 

3.3.5 Recent Result: ERT Inversion for 3-D Parameter Distribution using EMGeo 

Subsequent to the ERT inversions presented in the previous sections and the coupled 
hydrological-geophysical inversions of Section 3.4, additional ERT inversions were performed, 
using EMGeo, in an effort to estimate 3-D distributions and to see if 3-D effects were significant 
and/or influencing the 2-D interpretations in the previous sections. Figure 14 shows the estimated 
saturation of CO2 at a series of times ranging from day 13 to day 103. A slice through the model 
at y = -3 shows that the center of the plume was not directly in between the observation wells. 
The isosurface shows interesting variations in 3-D. These results compare favorably with the 2-D 
results obtained by Carrigan et al. (2013), as shown in Figure 15. 
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Figure 14: Inversion for 3-D resistivity distribution, converted to CO2 saturation as function of time. 
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Figure 15: Estimation of CO2 saturation based on 2-D ERT inversion (Carrigan et al., 2013). 
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3.4 COUPLED HYDROLOGICAL-GEOPHYSICAL INVERSION RESULTS  

The following hydrological modeling used different meshes and geometrical assumptions aimed 
at identifying the core characteristics of CO2 migration in the reservoir. This study first 
considered a radial model, and then used the coupled inversion scheme to optimize the 
parameters of a model consisting of three 1-D layers and used the inversion results to construct a 
3-D model. Sketches of the three meshes are shown in Figure 16. Results from a preliminary 
inversion using a 3-D model are shown subsequently. 

The complex interplay between CO2 and CH4 and the two flow paths that were inferred from the 
gas composition monitoring data (Figure 7) were confirmed by flow and transport simulations. 
Figure 17 shows CO2 and CH4 mole fractions in the gas phase as well as gas saturation for the 
three layers, as predicted by the inversion model M1 (see Section 3.4.2). The first gas arrival was 
the CH4 in the middle layer, followed by the CO2 in the same layer. The CH4 in the bottom layer 
arrives next, reducing the CO2 mole fraction averaged over the full depth interval of the 
reservoir. Lastly, the CO2 in the bottom layer arrived, increasing the depth-averaged CO2 mole 
fraction for the remainder of the injection period. The parameter that controls the double arrival 
of CO2 in the observation wells was the permeability difference between the middle and the 
bottom layers. No double arrival can be observed when the permeability was the same, and the 
time difference between the arrivals increased with increasing permeability difference between 
the two lower layers. 

Figure 17 illustrates that for model M1 (see Section 3.4.2) the gas saturation in the top layer 
remains very small, so that the contribution from the top layer to the depth-averaged gas 
composition measured in the boreholes was minor. Note also that the gas saturation stayed 
relatively low after the arrival of the CH4 and significantly increased with the arrival of the CO2. 

3.4.1 Simulation with Radial Model 

Porosities and layer thicknesses in the initial three-layer radial model (Figure 16a) were based on 
the porosity log, and permeabilities were based on measurements of sidewall cores in F1 and 
whole cores in F2. The assigned permeabilities range from kt = 5 millidarcy (mD) for the top 
layer to km = 249 mD for the middle layer and kb = 150 mD for the bottom layer (see also Table 
1). Figure 18 shows the measured and simulated gas composition and ERT data. The radial 
model simulation predicted that the gas phase arrives at days 15.3 and 26.8 for F2 and F3, 
respectively, which was significantly delayed compared to the field data (days 11.0 and 15.0, see 
also Table 2). Especially the large time difference between the arrivals at F2 and F3 did not agree 
with the field observations. Increases of model permeability by factors of 10 and 100 shifted the 
arrival time in F3 by 2–3 days, but could not explain the early arrival in F3 and its short delay 
compared to F2. The mismatch of the arrivals between field data and simulations was also 
expressed by high data misfit values that were shown along with the simulation parameters in 
Table 2. 
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Figure 16: Meshes for the flow and transport modeling in Sections 3.4.1 through 3.4.3. (a) Initial 3-layer 

radial model, (b) linear model with variable reservoir width, and (c) 3-D model. Model (b) was used in the 
fully coupled inversion due to its flexibility with variable reservoir width and fast simulation times (1–2 min). 

The simulation cell size was about a factor of 5 finer than plotted here. 

 

 

 

 

 
Figure 17: CH4 and CO2 gas mole fraction and gas saturation as simulated by model M1 at day 13. Note how 
the CH4 arrives first with relatively small gas saturation and that gas saturation increases with the arrival of 

CO2. The combination of the two lower layers creates the double arrival of CO2 and CH4 that can be 
observed in the measured (Figure 7) and simulated (Figure 18) data. 
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Table 1: Parameters and data misfit for the different flow and transport simulations. Model M0 is the 
starting point of the fully coupled inversion and models M1–M3 are the inversion results. Gray shaded cells 
mark active parameters and data sets in the different inversions; boldface marks the lowest misfit for each 

data set. Parameters are given with their estimated uncertainty (standard deviations). 

Parameters  Data Misfit 

Models 
Width 
(m)  kt (mD)  km (mD)  kb (mD)  kv (mD)  CO2 rms 

Resistivity 
rms  Total rms 

Radial  ‐  5  249  150  5  11.8  5.0  10.0 

M0  200  5  249  150  5  14.7  8.3  12.8 

M1  82 ± 4  5  249  150  5  7.7  3.2  6.5 

M2  67 ± 3  11 ± 1  97 ± 25  77 ± 29  23 ± 2  9.7  1.6  7.9 

M3  65 ± 1  5 ± 1  176 ± 8  92 ± 8  11 ± 2  3.3  3.1  3.2 

3‐D  65  5  176  92  11  2.4  4.0  3.0 

 

Table 2: Arrival time of the CO2 gas/supercritical phase at observation wells F2 and F3 

Models 

CO2 Arrival Time 

F2 (days)  F3 (days) 

Field  11.0  15.0 

Radial  15.3  26.8 

M0  20.2  26.3 

M1  12.3  18.5 

M2  13.7  20.5 

M3  10.0  15.5 

3‐D  7.9  12.9 

The arrival times measured in the field and the best fit are highlighted  
in boldface. 

 

The other two parameters with a strong influence on the gas arrival times are porosity and 
residual liquid saturation. The relative permeability and capillary pressure function used a 
version of the Brooks–Corey model (Luckner et al., 1989) that was modified to be numerically 
stable (Finsterle, 1999a). A pore size distribution index of 0.65, a gas entry pressure of 4,000 Pa, 
and a residual gas saturation of 0.01 was chosen. Tests with different residual liquid saturations 
Slr showed that only high Slr values were consistent with the ERT-derived resistivities. Slr values 
lower than 0.5 produced resistivity changes much larger than observed. The best match with the 
observed change in resistivity was achieved with Slr = 0.75. Using this relatively high Slr also 
helped reduce the arrival time of the gas at the observation wells, which would otherwise be 
much further from the observed value than described above. In the reservoir, the high Slr could 
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represent fingering, which is prevalent when a low-viscosity fluid displaces a high-viscosity fluid 
and which is expected in fluvial deposits with strong local permeability variations. 

Changes in porosity also affected the migration velocity of the CO2, and decreasing porosities 
reduced the arrival times of the gas phase at the boreholes. For the radial model, reducing the 
layer porosities to 70% of their initial value improved the predicted breakthrough in F2, but the 
F3 breakthrough was still delayed by 7 days. While borehole-log derived porosities carry 
uncertainties, it was determined that they are unlikely to be off by 30%. In the following, 
especially in the inversions, Slr = 0.75 and the borehole-log derived porosities were fixed, while 
the reservoir permeabilities were varied; ideally, one could invert for all of these parameters 
simultaneously, but this study found that data coverage and strong parameter correlations did not 
allow for this. 

 
Figure 18: Measured and simulated CO2 gas mole fraction in (a) F2 and (b) F3, as well as (c–e) inverted and 

simulated resistivity time series. Note how the match between simulated and measured data (timing and 
characteristics) is improved through the model development and inversion process. The gray shaded area 

around the data illustrates the assigned measurement uncertainty (standard deviation).  

 

3.4.2 Inversions with 2-D Models  

While parameters in the radial model can be varied so that the arrival at one of the two 
observation wells can be matched, the time difference between the arrival in F2 and F3 was 
always overestimated. This is not surprising when looking at the distance-to-arrival-time ratio of 
70 m in 11 days and 100 m in 15 days for the respective boreholes, which both correspond to 
approximately 6.5 m/day. This constant flow velocity indicated a system with 1-D rather than 
radial characteristics. A three-layer model was created, with each layer consisting of a 1-D 
model, as shown in Figure 16b. The width of the reservoir, which determines the widths of the 
three 1-D models, was introduced as an extra parameter that could be varied to fit the data. This 
reservoir width can be seen as a representative width of the depositional flow channels accessible 
to CO2. The run time for the 30-day flow and transport simulation with this model was 1–2 



Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration 

33 

minutes (comparable to the radial model), depending on the parameter set. This short run time 
enabled detailed parameter testing and inversions. 

Reservoir width and permeability were optimized using iTOUGH2 in a step-wise inversion, 
sequentially adding more data and parameters. The assigned standard deviations were 0.05 for 
the gas composition data and 0.01 for the ERT-derived resistivities (gray shaded areas in Figure 
18). All three inversions (M1–M3) converged in 4–15 iterations. The inversion was started with 
model M0, using the same permeabilities as in the radial model (see Table 1). In the first 
inversion, only the reservoir width was optimized against the ERT-derived resistivities, arriving 
at model M1, with a reservoir width of 82 m. This result was independent of the reservoir width 
in the starting model, whether it was 20, 100, or 200 m. In the second inversion, M1 was further 
optimized, by allowing the horizontal permeabilities kt, km, kb of the three layers and the vertical 
permeability kv, controlling flow between the upper two layers, to change. The resulting model 
M2 fit the ERT-derived resistivities very well (see Figure 18c–e and Table 1), but does not 
capture the arrival time or double arrival of the CO2. Including the time-series of CO2 gas mole 
fraction at wells F2 and F3 as additional data type in M3 improved the CO2 data misfit, resulting 
in both data sets being fit reasonably well. The arrival times of the gas phase in the two 
observation wells are off by 1 day for F2 and only 0.5 days for F3 (see Table 2). The estimated 
reservoir width of this final model is 65 m and permeabilities are in the range between 5 mD and 
176 mD (Table 1). 

3.4.3 Simulation with 3-D Model Parameterized by 2-D Inversion Results 

To assess the inversion results, a 3-D model was built on the basis of the parameters estimated in 
the inversion of the previous section. The model consisted of the same three layers as the other 
models, but was finely discretized in both horizontal directions (Figure 16c). The 65 m reservoir 
width was implemented by no-flow boundaries at 32.5 m distance on either side of the injection 
well. The direction along the borehole line was discretized the same way as the radial and 
inversion models. The symmetry along the borehole line and perpendicular to it through the 
injection well was used, so only one quarter of the total domain needed to be simulated. The fine 
discretization around the injection borehole and the 26,506 model cells increased the simulation 
run time from 1 to 2 minutes for the radial or inversion models to 20 hours, currently making 
inversion on a serial computer impractical. 

The simulation results for the 3-D model (Figure 18) were similar to the inversion result with the 
simplified model, but showed one main difference: the arrival time was 2–3 days earlier than in 
the final inversion result. This delay in the simplified model was attributed to the line-source 
nature of the injection and the associated smaller pressure increase, which was the driving force 
for the movement of the CO2. The 3-D modeling results are 2–3 days off in predicting the gas 
phase arrival, showing the characteristic double arrival and actually showing the smallest CO2 
gas mole fraction data misfit (Table 1) of all simulations so far. 

While the final model reproduced some important features observed in the field data, it was 
concluded that improvements in the conceptual model, such as introducing spatial permeability 
heterogeneity within the geological layers, were required to improve results further (see Section 
3.3.5).  

This 3-D model built on the basis of the inversion results matched the observed data equally well 
as the inversion result and actually showed the smallest overall data misfit of all simulations 
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previously considered (Table 1). The low misfit was due to an improved fit of the CO2 gas mole 
fraction data (Figure 18a and b), while the ERT data misfit was slightly higher than after the 
inversion. The effect of a reduced misfit in one data set at the cost of an increased misfit in 
another data set showed the difficulty of integrating partially inconsistent data. A clear 
inconsistency between the data sets was the arrival at day 11 of the gas phase in F2 (Figure 18a) 
and the ERT showing the first increase in resistivity around day 15 (Figure 18c–e). 

Evaluation of additional data that was not used in the inversion builds confidence in the validity 
of this 3-D model: the simulated and observed gas phase arrival times (Table 2) have a mismatch 
of only 2–3 days for both observation wells. The tracer data measured in the two observation 
wells and the bottom hole pressure in the injection borehole F1 are shown in Figure 19. The 
amplitude and peaks of the SF6 tracer were matched reasonably well in both boreholes. The 
simulated bottom hole pressure (Figure 19b) matched the observations toward the middle of the 
30-day period of interest, but was initially too low and too high toward the end. The fact that the 
pressure data were not included in the inversion is attributed to the higher initial pressure in the 
observations to a skin effect around the borehole that was confirmed in the field (Hosseini et al., 
2013), but not included in this modeling. In addition to the skin effect, the local heterogeneity 
around F1 was an important factor, as the sidewall cores show much lower permeability than 
those in F2, which are lower than those in F3. 

Performing the coupled inversion using a simplified model with three 1-D layers as opposed to 
the 3-D model was beneficial due to the decreased simulation run time, which was reduced by a 
factor of around 600. Recent developments in the parallelization of the TOUGH2 simulator 
(Zhang et al., 2008) and iTOUGH2 (Finsterle, 1998; Commer et al., 2012) can significantly 
reduce the simulation and inversion run times, so that inversions with large 3-D models become 
feasible (see Section 3.3.5).  

 
Figure 19: Comparison of additional field data (not used in inversion of this section) and simulation results 
using the final 3-D model from Section 3.4.2. (a) Gas mole fraction of SF6 tracer injected at day 3 and (b) 

bottom hole pressure in the injector F1. 
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3.4.4 Preliminary Inversion for 3-D Model Parameters 

Next, the 3-D model was modified to include a total of 25 unknown parameters, consisting of 22 
spatially varying log10 k values in the lower two layers, and three in the upper layer, allowing 
for heterogeneity in the permeability. 

Inversion was accomplished using MPiTOUGH2 (Commer et al., 2013), which enabled parallel 
inversion runs in which computational improvements to the inversion framework iTOUGH2 
were made by replacing the underlying original hydrological simulator TOUGH2 by its parallel 
counterpart TOUGH2-MP. Allowing for the domain decomposition of a potentially large 
simulation domain, a new parallel level was added to the concept of distributing multiple 
forward simulations across parallel processes, thus enabling the efficient exploitation of many-
core computing resources. Further, the merge with a parallel geophysical simulator for electrical 
and electromagnetic data types extended the parameter estimation and error and uncertainty 
analysis tools of iTOUGH2 to treat a range of hydrogeophysical problems for models that are 
characterized by high computing demands. These developments were a necessary step to begin 
addressing the demands resulting from increasing model complexities and a constantly widening 
range of hydrogeological applications, such as the modeling of CO2 in the subsurface. 

The modified simulation mesh in Figure 20 covers a volume of approximately (x × y × z) 1,051 
m × 150 m × 21 m, totaling 36,094 mesh elements and 83,465 connections between them. As 
before, the system was assumed to be isothermal, and five mass balance equations were solved 
per mesh element, resulting in a (sparse) matrix system size of 180,470 × 180,470. Element 
volumes range from 0.05685 to 3,308 m3, excluding boundary elements. Symmetry 
considerations allowed for only one quarter of the simulation domain to be modeled and have the 
purpose of limiting the non-uniqueness problem given by the data sparsity, and to provide a first 
evaluation whether the introduced lateral heterogeneity improves the data fits of the previous 
sections. Note that a more realistic 3-D representation of the site is being developed in ongoing 
efforts. 

Numerical time steps varied from an initial size of 0.2 s to 3.4×1010 s for the steady-state 
evaluation until injection begins, and from 1 s to 4×104 s for the subsequent transient testing 
period of 40 days, requiring a total of 525 time steps on average. Figure 21 illustrates the 
computational requirements for a single forward simulation, where runtimes were evaluated for 
one to 96 parallel processes. The bulk runtime consisted of the solution of the linear equation 
systems at each time step, followed by the time for the matrix system’s assembly. Each time step 
further involved updates of the thermophysical properties (indicated by equation-of-state 
update). All runs used the BiCGSTAB solver of the AZTEC package (see Commer et al., 2013 
for details), where the single-threaded run completed after 6.5 hours. For comparison, a 
simulation was carried out using the original (single-threaded) TOUGH2 direct solver LUBAND 
(using LU decomposition techniques) (Moridis and Pruess, 1998), which required 55.5 hours on 
the same compute server. Note that calculations were carried out on a Linux cluster with Intel’s 
Xeons CPU at 2.33 GHz, 12 cores per node, cache size 4,096 KB, Mellanoxs QDR Infiniband 
network (theoretical limit of 40 GBit/s). 

After 24 model updating steps, the Levenberg-Marquardt scheme terminated with the maximum 
number of 10 trial steps for further misfit reduction. Figure 22 shows the initial model guess (a), 
final distribution of estimated permeability (b), and estimated parameter sensitivities (c). A 
comparison between the field data and the data simulated from the inversion result is shown in 
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Figure 23. The simulated electrical conductivity (EC) (reciprocal of the resistivity) change data 
(b-d) reproduced the trend of decreasing EC (increasing resistivity) in all layers as the saturation 
of injected CO2 increased between the observation wells, though the arrival time of CO2 is 
slightly under-predicted in Layer 2. Values of zero before the measured onset were assumed to 
fill the gap (due to clogging of the U-tube) in the CO2 mole fraction data. The validity of this 
assumption was indicated by the match between simulated and measured onset (e, f). The first 
recorded values of the SF6 tracer, corresponding to the tail end of the first peak of the tracer 
arrival, were also reproduced by the inversion (g, h). However, it was found that the overall 
inversion progress benefits from strongly down-weighting the SF6 tracer data, to a degree that 
their influence on the inversion is negligible. This indicates that this model parameterization may 
still be inadequate to explain the complicated arrival history of all data sets simultaneously.  

The total fitting error is reduced by 80% (with respect to the starting model’s data fit). Table 3 
summarizes the starting (Iteration 0) and final (Iteration 24) errors for each of the 7 individual 
data sets, their average data standard deviations (in % of the data amplitudes), and their number 
of data points. While the largest error reduction was attributed to the CO2 mole fraction data, 
most of the complexity of the peaks that follow the first arrival was not well reproduced, also 
indicating the need for further refinement of the inversion. This was likely to also further 
improve the EC change data fits. Ongoing research aspects include improved parameterization of 
the model, analysis of the sensitivity of the results to the initial guesses, and construction of a 
fully-3-D numerical grid for the forward simulations. 

 
Figure 20: Field site (top) and corresponding numerical grid used in Section 3.4.4 shown in its entirety 

(middle) and zoomed in around the wells (bottom). 
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Figure 21: Computing times versus resources for a single forward simulation of the Cranfield 3-D model, 

using from 1 to 96 parallel processes (see Commer et al., 2013). 

 

 

Table 3: Data fitting errors calculated from the starting model (Iteration 0) and final model (Iteration 24) for 
each of the 7 individual data sets (see Commer et al., 2013) 

Data set 

Ɛ 

(Iteration 0) 

Ɛ 

(Iteration 24) 

Average 
standard 

deviation (%) 
Number of 
data points 

Layer 1, change in EC  5.65  1.63  1.05  19 

Layer 2, change in EC  7.51  10.57  1.15  19 

Layer 3, change in EC  4.05  2.54  1.12  19 

Well F‐2, CO2  8.40  2.67  5.75  44 

Well F‐3, CO2  54.67  2.02  5.66  40 

Well F‐2, SF6 tracer  1.78  2.26  96.73  42 

Well F‐3, SF6 tracer  0.63  0.62  126.73  36 

Note: The average data standard deviations (calculated as a percentage of the data amplitudes) in  
column 3 highlight the relative weight on the inversion process that is attributed to each data set. 



Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration 

38 

 
Figure 22: (a) Starting model guess, (b) final inversion result, and (c) estimated dimensionless parameter 

sensitivities of the 3-D inversion result of Section 3.4.4. The lateral model parameterization of each layer is 
outlined in (a). Altogether 25 horizontal permeability parameters are distributed over all three layers. Note 

the spatially truncated representation in order to focus on the fine parameterization of the region around the 
wells. See Commer et al. (2013) for details on calculation of the parameter sensitivities.  
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Figure 23: Data fits calculated from the preliminary 3-D inversion result of Section 3.4.4. (a) The total error 
contributions calculated for each inversion iteration n, for the three different data types (change in EC, CO2 

gas mole fraction, and SF6 tracer gas mole fraction). Observations and final data fits calculated from the 
model of inversion iteration are shown for the individual data sets: (b-d) EC change data, (e,f) CO2 gas mole 

fractions, and (g,h) SF6 tracer gas mole fractions. 

 

3.5 DISCUSSION  

The results of the ERT inversion (Section 3.3) show both the high potential and the limitations of 
electrical resistance monitoring of CO2 in deep reservoirs. The main advantage is clearly the 
sensitivity to changes in gas saturation at the inter-borehole scale that are otherwise very difficult 
to monitor. The challenges in the specific case of the Cranfield field experiment relate to the 
complex and involved field effort and the comparably poor data quality. Both factors are due to 
the harsh conditions existing at the site and complicated deployments at depths greater than 
3,000 m. The ability to image the front of the gas phase moving between the two boreholes 
would have helped the characterization of the reservoir immensely, but was unfortunately not 
possible in this specific case due to the poor signal to noise ratio and available electrode 
geometry. Future experiments in shallower environments with improved signal to noise ratio will 
have a good chance of success in this respect, building on the experimental experience gained 
here. 

The constrained inversions (Figure 12) showed how important structural information can be for a 
meaningful inversion of ERT data. Moreover, the single parameter inversion (Figure 13) 
demonstrated a way to retrieve dependable time series of the average change in resistivity for the 
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three reservoir layers–despite limitations in data quality. The time-lapse formulation of the ERT 
inversion and the petrophysical relationship also minimized uncertainties in the estimation of gas 
saturation change. Only Archie’s saturation exponent n in Equation 2 needs to be assumed or 
inverted. 

The model development process showed that a radial model was not adequate for simulating the 
Cranfield reservoir and reproducing the ERT and gas composition data. The main difference 
between the radial model and the inversion model, which consisted of three layers of 1-D 
models, was the limited reservoir width; using the latter model for inversion was inspired by the 
fact that the same phase-front velocity between the injection well and the two observation wells 
were observed, which indicated a linear rather than a radial flow field. In the reservoir formation 
(the Tuscaloosa D/E sands), this limited reservoir width probably represents braided flow 
channels with interbedded low permeability zones. The relative timing of the gas phase arrival in 
the two observation wells was reproduced much better by the limited-width model, indicating 
that the general flow behavior was captured. Another explanation for the early arrival in F3 could 
be a fast flow path that was accessed by F3 and not by (i.e., bypasses) F2. However, this 
hypothesis cannot be tested with the available data. 

The coupled inversion of ERT-derived resistivities and gas composition data showed that the 
available data could be reasonably matched by optimizing reservoir width and permeabilities. 
Including ERT data reduced the non-uniqueness of the inverse problem and helped avoid local 
minima in the objective function. The gas composition data added additional information about 
the detailed arrivals at the wells. Results of inversions with the gas composition data alone were 
strongly dependent on the permeability starting values and did not give reliable results. The step-
wise inversion, where more data and parameters were sequentially added, was important to 
ensure convergence to the global minimum. The layer permeabilities were chosen as the main 
inversion parameters, knowing that changes in porosity or residual liquid saturation Slr also 
strongly influence the flow velocities. The porosities in these models are derived from borehole 
logs and the residual liquid saturation Slr = 0.75 was constrained by the amplitude of the change 
in resistivity. However, the uncertainty of the Slr value was significant and the borehole porosity 
logs could also be off by a few percent. The permeabilities of 176 mD and 92 mD in the lower 
two layers of the final inversion result agree with core permeability estimates from F2 (most 
between 10 mD and 100 mD, with a mean of 31 mD; Lu et al., 2013) and F3 (most between 1 
mD and 1,000 mD, with a mean of 148 mD; Lu et al., 2013) and 400 mD derived from a 
hydraulic well-test between F1 and F2 (Hosseini et al., 2013). 

The 3-D model built on the basis of the inversion results matched the observed data well (Section 
3.4.3), and the misfit was reduced even further when allowing for 3-D heterogeneity (Section 
3.4.4). Ongoing efforts include coupled hydrological-geophysical inversion with direct resistivity 
data, rather than the reduced form as was considered in this study. 

3.6 CONCLUSIONS  

This study investigated how electrical resistance monitoring data could be used for constraining 
models for simulation of the flow and transport of CO2 at the SECARB pilot site in Cranfield, 
Mississippi. The coupled modeling and inversion scheme of iTOUGH2 was used, where 
simulation results were directly compared to available geophysical and hydrological data. In this 
example, the ERT monitoring data was first inverted for changes of subsurface resistivity. The 
increasing resistivity was imaged due to the arriving gas phase CO2 and found that these 
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inversions were strongly improved by including structural information, e.g., from borehole log 
data. Due to data quality limitations, the fine-scale CO2 movement through the reservoir could 
not be imaged, but time series of average resistivity in the three reservoir layers showed a clear 
and consistent increase in resistivity due to the increase in gas saturation. 

Simulations were tested in the hydrological model development by comparing predicted and 
measured (inverted) resistivities in three reservoir layers and gas composition data from two 
observation wells, which determined the following: 

1. The reservoir could not be properly described with a radial model; flow characteristics 
(e.g., arrival times versus distance) indicated linear flow. Linear flow was implemented 
by limiting the reservoir width. This effective reservoir width (with best estimate of 65 
m) represents the flow channels in the fluvial deposits. Out-of-plane preferential flow 
paths could give a similar response, this hypothesis could not be satisfactorily assessed 
with the available 2-D data. 

2. ERT and gas composition data could be used to invert for the layer permeabilities and 
reservoir width of a simplified model 

3. ERT data was crucial in the inversion due to the large measurement footprint and direct 
link to gas saturation. Inversions of gas composition data alone did not give reliable 
results. 

4. A 3-D model built on the basis of the inversion result provided some confirmation of the 
parameter estimates since the ERT, CO2 gas mole fraction and tracer data were fit 
reasonably well. A subsequent coupled 3-D inversion allowed for 3-D heterogeneity and 
an improved data fit. 

5. These findings showed the potential benefit from monitoring CO2 migration with ERT 
data, as well as potential limitations due to poor data quality and structural resolution 

6. Fully coupled inversion of time-lapse ERT data with the directly measured resistance 
values rather than the reduced form or ERT data for detailed 3-D distributions of 
permeability will be an important extension of this work 
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