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1 Executive Summary 
Cost reductions from first of a kind to mature technology can be attributed to a combination of 
research and development (R&D) and learning-by-doing. The learning-by-doing effect was first 
observed in airplane manufacturing assembly lines, where increased worker experience led to 
decreased labor time and, as a result, cost reductions. Similar cost reductions and trends have 
since been studied and applied to capital projects, including energy technologies. This analysis 
explores the contributions of R&D prior to deployment and learning-by-doing on fossil energy 
technology cost reductions.   

Numerous sources have used learning-by-doing curves to project future capital cost trajectories. 
However, caution should be taken when using this approach due to the following issues: wide 
variation in learning rates; learning curve analysis was designed to retrospectively determine 
learning effects, not predict cost reductions; it is difficult to separate impacts from R&D and 
learning-by-doing. 

A learning curve analysis tool and cash flow model were constructed for carbon capture, 
utilization, and storage (CCUS) capital costs to quantify these effects. The results of this analysis 
show that without CCUS R&D prior to deployment, the opportunity to learn-by-doing does not 
occur because commercial entry costs are prohibitive. 

 

2 Overview of Learning Curve Analyses  
In the 1930s, aeronautical engineer Theodore Wright concluded that learning from experience 
was a factor affecting the cost of airplane manufacturing. He observed that the labor hours 
required for completing a given operation, such as constructing the airframe, declined when the 
operation was repeated and the workers’ level of experience increased (Wright, 1939). In the 
early 1960s, Kenneth Arrow published a study that sought to formulate the effects of learning-
by-doing more precisely and draw from it a number of economic implications (Arrow, 1962). 
Over time, the effect of learning-by-doing became known as the “learning curve effect”1 and a 
variety of mathematical formulas have been developed over the years to estimate the cost decline 
that occurs as a new capital good is produced in greater numbers.   

Exhibit 2-1 depicts a conceptual example of a learning curve that is often found in manufacturing 
or capital projects. Low values on the horizontal axis (units produced) represent a first of a kind 
process or technology that experiences significant reductions in capital costs during the early 
adoption phase. As more and more units are produced, the process is slowly perfected and 
additional decreases in capital costs are marginal. At this point, the process or technology is 
considered mature. 

Such models are increasingly being used to analyze the deployment of energy technologies, 
including CCUS, and to predict reductions in costs associated with energy projects. Due to the 
learning curve effect, price forecasts for advanced energy technologies generally assume that the 
price will decline once the innovation is mass produced. For example, a recent study of large-

                                                 

1 This phenomenon is also referred to as the “experience curve effect” and the two terms will be used interchangeably in this paper. 
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scale offshore wind power in the United States included the learning curve effect in its price 
forecast (National Renewable Energy Laboratory, 2010). In another example, the Brazilian 
Energy Initiative sought to increase the commercial use of ethanol by setting mandatory targets 
that were expected to help bring the cost of ethanol down through the learning curve effect, 
thereby enabling ethanol to be a cost competitive option in the liquid fuels market when the 
regulation was no longer in effect (Goldemberg et al, 2003).  

 

Exhibit 2-1. Conceptual Example of a Learning Curve.  

 

 

However, while learning curves have become a common tool for forecasting the costs of new 
energy technologies as they penetrate the marketplace, concerns have been raised that there are 
significant uncertainties involved in the use of learning curves for cost trajectory predictions. 
One source of debate is the behavioral assumptions associated with learning curve behavior for 
analyses associated with energy technologies, i.e., the use of the classic log-log linear model 
(shown in Exhibit 2-1) versus an exponential model, and even the promotion of an S-shaped 
learning curve (Yeh and Rubin, 2012).  

Another issue for learning curve analyses associated with cost reduction predictions is the choice 
of learning rate that is used within the model. These rates are typically chosen based on learning 
rates calculated using models of historical learning curves of similar projects from the past. This 
issue is especially pertinent for learning curve analyses of new energy technologies as large 
variations in learning rates associated with past projects exist for most energy technologies.  
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A study by McDonald and Schrattenholzer (2001) that focused on learning rates for energy 
technologies found large variations in estimated learning rates, even for the same energy 
technology, examples are shown in Exhibit 2-2. They found that some of the factors that 
accounted for the variability in the estimated learning rates included experience depreciation, 
short-term pricing behavior, varying intensities of R&D, economies of scale, differences in 
performance measures, definitional differences, and cost variability for factors such as land, 
wages, and interest payments. In their conclusion, McDonald and Schrattenholzer emphasized 
that “[m]ore work is necessary, however, to properly address [these] factors, particularly 
experience depreciation and the impact of R&D investments.” (p. 260). 

 
Exhibit 2-2. Varying Learning Rates of Energy Technologies. 

  

Technology 
Region 

of Study 
Time Period 

of Study 
Estimated 

Learning Rate Reference 

Coal Power Plants USA 1960 – 1980 1.0 – 6.4 Joskow & Rose (1985) 

Coal for Electric 

Utilities 
USA 1948 – 1969 25 Fisher (1974) 

Crude Oil at the Well USA 1869 – 1971 5 Fisher (1974)  

Solar PV Modules World 1976 – 1992 18 IEA (2000) 

Wind Power USA 1985 - 1994 32 IEA (2000) 

Wind Power  EU 1980 – 1995 18 IEA (2000) 

Data Source: McDonald and Schrattenholzer, 2001 

 

This highlights an important aspect of learning curves and the learning rates that are based on 
historical information; they include the effect of continued R&D. As pointed out by Rubin et al 
(2004): “[T]he observed cost decreases … reflect not only the benefits of learning by doing, but 
also those derived from financial investments in research and development to improve the 
technology and its production.” (p. 60). Thus, it is difficult to determine what the true learning 
rate (i.e., in the absence of R&D effects) would be. Applying learning-by-doing directly likely 
overstates predicted cost reductions. 

When undertaking a learning curve analysis, it is important to keep in mind that learning curves 
were developed as an empirical measurement of learning-by-doing in manufacturing, not as a 
predictive tool for estimating future costs (Jamasb and Kohler, 2008). As a result of the issues 
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discussed in this section, namely the debate over learning curve behavior and the many 
uncertainties associated with estimating learning rates, learning curve models alone do a poor job 
of accurately forecasting cost trends of new technologies and differentiating between the impacts 
of R&D and learning-by-doing.   

 

3 CCUS Cost Reduction Analysis 
The National Energy Technology Laboratory (NETL) manages a portfolio of laboratory and field 
R&D focused on capturing carbon dioxide from large stationary sources such as power plants, 
and sequestering it using geologic or terrestrial approaches. One goal of CCUS R&D is to 
decrease the capital costs associated with retrofitting existing coal plants with CCUS equipment.  
NETL intends to achieve this goal prior to commercial deployment of CCUS technologies so that 
it is cost effective. Once the first CCUS installation takes place, the costs of subsequent 
installations are expected to decrease as manufacturers and operators learn new and more 
efficient methods of design and operation.  

However, in the absence of R&D, power plant operators will have to begin deployment of CCUS 
technologies at the current high cost of commercially available CCUS technologies. If these 
costs are prohibitively expensive, CCUS technologies might have limited or no deployment, in 
which case cost reductions from learning-by-doing would be minimal or non-existent. This 
suggests that if there is no cost reduction provided through R&D, then there might be no 
“doing”; and in turn, no cost reductions from learning effects. 

The following analyses explore the contributions of R&D and learning-by-doing to future costs 
reductions in CCUS capital costs and assess the implications for CCUS deployment within the 
coal-fired power plant fleet.   

3.1 Learning Curve Analysis 

To model learning-by-doing for CCUS, a learning curve analysis tool was constructed. The tool 
uses the classic log-log linear learning curve equation, defined as: 

Y = axb  

where: 

Y =  CCUS capital cost after installation on x plants, as a percentage of the initial cost 

a  =  CCUS capital cost for CCUS installation on the first plant (100%) 

x  =  Number of plants that have installed CCUS 

b  =  Learning rate exponent 

(1 - 2-b) = Learning Rate, expressed as a percentage 

The behavioral assumptions of this particular learning curve model are associated with the fastest 
cost reductions over time as large decreases occur for the first few installations. As shown below 
in Exhibit 3-1, even under these assumptions, it still takes a substantial amount of capital 
investment (installed capacity of about 90 plants) for a 50% reduction in CCUS capital costs to 
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be realized through learning effects. Other formulations of the learning curve that are mentioned 
above would be even more conservative with regard to cost reductions and necessitate an even 
larger capital investment to achieve 50% cost reductions.   

As noted in Section 2, the choice of the learning rate is critically important in constructing the 
learning curve. Historic learning rates for power plant technologies were 5% for pulverized coal 
units, 10% for gas turbine-combined cycle units, 11% for flue gas desulfurization systems, and 
12% for selective catalytic reduction of NOx (Rubin et al, 2007). Citing similarities with flue gas 
desulfurization technologies, Riahi et al (2004) estimate a 13% learning rate for CCUS 
technologies. For the purpose of this analysis, a learning rate of 10% (b = −0.152) is assumed 
representing the average of the aforementioned learning rates; an error band representing a 
learning rate range of 7% to 13% is also assumed to reflect the inherent uncertainty in this 
assumption.  

The learning curve tool was used to construct learning curves for CCUS without R&D at current 
technology costs and with R&D, assuming that Federal R&D is able to reduce costs by 50% 
prior to deployment. Exhibit 3-1 shows the influence of learning-by-doing assuming no R&D 
and current CCUS technology costs. 

 

Exhibit 3-1. Learning Curve for CCUS, Current Technology Costs. 
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At a 10% learning rate, learning-by-doing achieves a 50% capital cost reduction after installation 
on 90 plants (approximately 77 GW capacity), at an estimated capital cost of $44.5 billion. At a 
13% learning rate, 50% capital cost reduction is achieved after installation on 30 plants 
(approximately 26 GW capacity), at an estimated capital cost of $15.5 billion. If the learning rate 
were only 7%, learning-by-doing alone might never achieve a 50% capital cost reduction. Thus, 
an exorbitantly large amount of capital would have to be spent before achieving a 50% cost 
reduction without any Federal R&D prior to deployment.  

A comparison of these results with the results for the case with Federal R&D (50% capital cost 
reduction before the first commercial installation) is shown in Exhibit 3-2. The green line starts 
at 50% to represent the cost reduction resulting from pre-commercial R&D. If a 13% learning 
rate is applied to the Current Technology costs and only a 7% learning rate is applied to Federal 
R&D costs, the two curves never intersect. This implies that at current costs, learning-by-doing 
effects alone never achieve the cost reductions that the Federal R&D in combination with 
learning-by-doing can achieve, even at the higher learning rate.  

 

Exhibit 3-2. Learning Curve for CCUS, 50% Capital Cost Reduction. 

 

 

3.2 Net Present Value Analysis 

Cost reductions from learning-by-doing require the installation of CCUS on one or a few 
“pioneer” plants, or else learning cannot occur. However, if a technology is too expensive, the 
first installation will never occur. Thus, to validate the results of the learning curve analysis, it is 
necessary to determine if power plants would install CCUS technology in the scenarios 
presented, or make a different choice.  
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A spreadsheet-based cash flow tool was used to make this determination. The tool, described in 
an earlier report (Zelek, 2011), performs plant-level economic analyses of new technologies for 
capturing and storing CO2 produced by existing coal-fired power plants. The model calculates 
the 30-year net present value (NPV) of cash flows for four options (retire the plant; continue to 
operate business-as-usual (BAU); retrofit with CCUS technology (amine scrubbers) for CO2 
capture; or build a new coal-fired plant with CCUS technology integrated into the plant design) 
at 381 individual coal-fired power plants in the U.S. In exercising the model, each plant 
“chooses” which option provides the best return, and the aggregate results are presented in tables 
and figures.  

The tool only looks at current coal-fired capacity, and does not consider added capacity. In 
addition, the model is not a dispatch model (i.e., the plants are not “gamed” against each other, 
the electricity price is not affected by plant closings, and coal is not compared to other fuels).  
This model does not incorporate learning effects. It is simply used to determine how many coal-
fired power plants would find a CCUS option to be the most economical choice in various CO2 
price ranges.   

The following three cases are used to determine the implications of Federal R&D on CCUS 
deployment (all cases use NEMS forecast electricity prices under the proposed Kerry Graham 
Lieberman (KGL) bill and 2009 average delivered coal prices): 

 Current CCUS Technology case, which uses current performance values and CCUS 
system costs from DOE/NETL reports and studies.  

 50% Reduction in CCUS System Costs, which assumes that Federal R&D is able to 
reduce CCUS system capital costs by 50% and uses lower capital cost, fixed cost, 
variable cost and heat rate penalty assumptions.  

 25% Reduction in CCUS System Costs, which assumes that Federal R&D is able to 
reduce CCUS system capital costs by 25% and uses lower capital cost, fixed cost, 
variable cost and heat rate penalty assumptions.  

The cases were intended to answer the following questions: 1) Without Federal R&D prior to 
deployment, how many units would find CCUS to be the best economic choice?; 2) If Federal 
R&D is able to achieve a 50% reduction in CCUS system costs prior to deployment, how many 
units would find CCUS to be the best economic choice?; and 3) If the Federal R&D program 
only results in a 25% reduction in CCUS system costs prior to deployment, how many units 
would find CCUS to be the best economic choice?. These are not simple questions to answer 
because the decision to install CCUS depends on the balance between the cost of CCUS and the 
economic benefit of selling the CO2 for uses such as enhanced oil recovery. Thus, the decision 
changes depending on the CO2 price. This is best illustrated by a figure showing the number of 
plants that would choose each option under various CO2 price ranges. 

Exhibit 3-3 displays the results of the NPV tool for the Current CCUS Technology Case and the 
50% Reduction in CCUS System Costs Case. In the Current Technology Case, at CO2 prices 
below $30/tonne, no plants would find CCUS to be the best economic choice and therefore no 
learning-by-doing would occur. At higher CO2 prices, the installation of CCUS becomes a good 
option for some plants. Learning-by-doing cost reductions could start to occur once CCUS 
retrofits and rebuilds become an economic option in the range of $30-$40/tonne; however, a vast 
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majority of the coal-fired fleet is still operating under a BAU option at this price and learning-by-
doing costs reductions would be minimal. Without further cost reductions or CO2 price increases, 
few additional plants would adopt CCUS. To reach the 90-plant installation level that would 
achieve the 50% reduction in CCUS system costs through learning-by-doing, the CO2 price 
would have to be above $40/tonne.      

 

Exhibit 3-3. Coal-Fired Power Plant Choices as a Function of CO2 Price:  
Current CCUS Technology vs. 50% Reduction in CCUS System Costs. 

                           Current CCUS Technology                                         50% Reduction in CCUS System Costs 

           

 

The effect of achieving the 50% cost reduction through Federal R&D on these decisions is 
substantial. At low CO2 prices ($20-$30/tonne), less than half of the coal fleet would find 
operating under the BAU option to be the most economical choice and a substantial number of 
plants would find the best option to be CCUS (approximately 150 retrofits and 50 rebuilds).  At 
CO2 prices in the $40-$50/tonne range, there are fewer than 30 plants operating under the BAU 
option, and a large majority of plants find that CCUS is the best choice. At these higher levels of 
deployment, learning-by-doing will take place and promote further CCUS cost reductions.   

The final case explores the effect of achieving only a 25% CCUS system cost reduction through 
Federal R&D.  These results, shown in comparison with the Current Technology Case in Exhibit 
3-4, show that very few plants adopt CCUS at CO2 prices in the $20-$30/tonne range.  However, 
at higher CO2 prices, there are substantially more new builds with CCUS technology and CCUS 
retrofits than in the Current Technology Case.  These results suggest that even if the Federal 
R&D is only able to reduce CCUS system costs by 25%, there is still value in the form of 
increased deployment and the earlier promotion of learning-by-doing.   
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Exhibit 3-4. Coal-Fired Power Plant Choices as a Function of CO2 Price:  
Current CCUS Technology vs. 25% Reduction in CCUS System Costs. 

                         Current CCUS Technology                                          25% Reduction in CCUS System Costs 

           

 

4 Conclusions 
Cost reductions in new energy technology can be expected to occur through some combination 
of R&D and learning-by-doing. This analysis has provided a deeper understanding of the 
complications that arise when attempting to use learning curves to predict the future cost 
trajectories of new energy technologies.  Also, a cautious application of a learning curve tool in 
combination with NPV analysis for CCUS is presented as one way to overcome some of these 
complications and to explore the possible contributions of both R&D prior to deployment and 
learning-by-doing. 

The learning curve analysis suggested that learning-by-doing could lead to substantial cost 
reductions in CCUS technologies; it suggested that learning-by-doing alone could achieve a 50% 
CCUS system cost reduction after installation on 90 plants.  However, the NPV analysis suggests 
that the current costs of CCUS technologies are prohibitive and that there would be no 
deployment of CCUS at a CO2 price less than $30/tonne and very little deployment at a CO2 
price less than $40/tonne.  With zero or only a few initial installations, there would be little 
learning-by-doing, if any at all.   

If Federal R&D prior to deployment is able to achieve a 50% reduction in CCUS system costs, 
substantial benefits result. At CO2 as low as $20/tonne, enough plants choose CCUS to enable 
significant learning-by-doing. At higher rates, most plants find CCUS to be their most 
economical choice and a substantial amount of CO2 is captured and stored.  Similar, though less 
substantial, results occur even when Federal R&D is able to achieve a CCUS system cost 
reduction of 25%.  Thus, the most significant CCUS system cost reductions and greatest chance 
of market penetration result from a mid range price for CO2, Federal R&D prior to commercial 
deployment and learning-by-doing.  
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