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Abstract 

Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide 
substantial benefits for effective oilfield management. By doing so, the predictive reliability of 
reservoir flow models, which are routinely used as the basis for investment decisions involving 
hundreds of millions of dollars and designed to recover millions of barrels of oil, can be 
significantly improved. Even a small improvement in incremental recovery for high-value assets 
can result in important contributions to bottom-line profitability. 

 
Today’s standard practice for developing a 3D reservoir description is to use seismic 

inversion techniques. These techniques make use of geostatistics and other stochastic methods to 
solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale 
and compare its acoustic response to that actually observed in the field. This method has several 
inherent flaws, such as: 
 

• The resulting models are highly non-unique; multiple equiprobable realizations are 
produced, meaning 

• The results define a distribution of possible outcomes; the best they can do is quantify the 
uncertainty inherent in the modeling process, and 

• Each realization must be run through a flow simulator and history matched to assess it’s 
appropriateness, and therefore 

• The method is labor intensive and requires significant time to complete a field study; thus 
it is applied to only a small percentage of oil and gas producing assets. 

 
A new approach to achieve this objective was first examined in a Department of Energy 

(DOE) study performed by Advanced Resources International (ARI) in 2000/2001. The goal of 
that study was to evaluate whether robust relationships between data at vastly different scales of 
measurement could be established using virtual intelligence (VI) methods.  The proposed 
workflow required that three specific relationships be established through use of artificial neural 
networks (ANN’s): core-to-log, log-to-crosswell seismic, and crosswell-to-surface seismic. One 
of the key attributes of the approach, which should result in the creation of high resolution 
reservoir characterization with greater accuracy and with less uncertainty than today’s methods, 
is the inclusion of borehole seismic (such as crosswell and/or vertical seismic profiling – VSP) in 
the data collection scheme. Borehole seismic fills a critical gap in the resolution spectrum of 
reservoir measurements between the well log and surface seismic scales, thus establishing 
important constraints on characterization outcomes.  

 
The results of that initial study showed that it is, in fact, feasible to establish the three 

critical relationships required, and that use of data at different scales of measurement to create 
high-resolution reservoir characterization is possible. Based on the results of this feasibility 
study, in September 2001, the DOE, again through ARI, launched a subsequent two-year 
government-industry R&D project to further develop and demonstrate the technology.  

 
The goals of this project were to: 
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 Make improvements to the initial methodology by incorporating additional VI 
technologies (such as clustering), using core measurements in place of magnetic 
resonance image (MRI) logs, and streamlining the workflow, among others. 

 
 Demonstrate the approach in an integrated manner at a single field site, and validate it via 

reservoir modeling or other statistical methods. 
 
Based on the results from the project, the following conclusions have been drawn: 
 

• A reasonable reservoir characterization model was established for the McElroy field 
using clustering methods. The model provided results that appear consistent with known 
conditions at the field, and identified potential areas of poor reservoir quality to be 
avoided for future development. The clustering approach has the advantage over ANN 
methods in that the entire process can be performed with a single, integrated model as 
opposed to multiple, sequential models. 

 
• Experimentation with and without cross-well data suggested that, in this case, cross-well 

data actually harmed model performance. It is believed that the cross-well data was of 
poor quality, which may have introduced error into the process, creating this result.  

 
• The process appeared to provide some, but not a significant level of, vertical resolution 

enhancement to the surface seismic data. Again, the failure of the cross-well data to 
enhance the results may have contributed to this outcome.  

 
• The engineering model to relate well logs to core data was very successful, even in this 

complex reservoir environment. This procedure can be used in other environments to 
provide porosity and permeability estimates at well locations with log data. The 
clustering of well logs did not appreciably improve the process. 
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Executive Summary 
 

Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide 
substantial benefits for effective oilfield management. By doing so, the predictive reliability of 
reservoir flow models, which are routinely used as the basis for investment decisions involving 
hundreds of millions of dollars and designed to recover millions of barrels of oil, can be 
significantly improved. Even a small improvement in incremental recovery for high-value assets 
can result in important contributions to bottom-line profitability. 

 
Today’s standard practice for developing a 3D reservoir description is to use seismic 

inversion techniques. These techniques make use of geostatistics and other stochastic methods to 
solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale 
and compare its acoustic response to that actually observed in the field. This method has several 
inherent flaws, such as: 
 

• The resulting models are highly non-unique; multiple equiprobable realizations are 
produced, meaning 

• The results define a distribution of possible outcomes; the best they can do is quantify the 
uncertainty inherent in the modeling process, and 

• Each realization must be run through a flow simulator and history matched to assess it’s 
appropriateness, and therefore 

• The method is labor intensive and requires significant time to complete a field study; thus 
it is applied to only a small percentage of oil and gas producing assets. 

 
A new approach to achieve this objective was first examined in a Department of Energy 

(DOE) study performed by Advanced Resources International (ARI) in 2000/2001. The goal of 
that study was to evaluate whether robust relationships between data at vastly different scales of 
measurement could be established using virtual intelligence (VI) methods.  The proposed 
workflow required that three specific relationships be established through use of artificial neural 
networks (ANN’s): core-to-log, log-to-crosswell seismic, and crosswell-to-surface seismic. One 
of the key attributes of the approach, which should result in the creation of high resolution 
reservoir characterization with greater accuracy and with less uncertainty than today’s methods, 
is the inclusion of borehole seismic (such as crosswell and/or vertical seismic profiling – VSP) in 
the data collection scheme. Borehole seismic fills a critical gap in the resolution spectrum of 
reservoir measurements between the well log and surface seismic scales, thus establishing 
important constraints on characterization outcomes.  

 
The results of that initial study showed that it is, in fact, feasible to establish the three 

critical relationships required, and that use of data at different scales of measurement to create 
high-resolution reservoir characterization is possible. Based on the results of this feasibility 
study, in September 2001, the DOE, again through ARI, launched a subsequent two-year 
government-industry R&D project to further develop and demonstrate the technology.  

 
The goals of this project were to: 
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 Make improvements to the initial methodology by incorporating additional VI 
technologies (such as clustering), using core measurements in place of magnetic 
resonance image (MRI) logs, and streamlining the workflow, among others. 

 
 Demonstrate the approach in an integrated manner at a single field site, and validate it via 

reservoir modeling or other statistical methods. 
 

The first step was to identify a suitable test site with all of the required data. The selected 
site was a several-section area in the McElroy Field of West Texas, operated by ChevronTexaco, 
primarily because of the availability of all data types required for the project. Once the site was 
selected and copies of all the data acquired, the analytic process was as follows: 
   

• A rock physics model was constructed based on the specific reservoir conditions at 
McElroy, and the sensitivity of various seismic attributes to reservoir parameters of 
interest were assessed. This enabled the prioritization of seismic attributes for inclusion 
in the broadband transform.   
 

• Both the surface and crosswell seismic were then processed to obtain: 
 

o Depth-converted traces to integrate with other reservoir data in the depth domain. 
o Co-located surface and crosswell traces such that they could be related to one 

another with correct spatial reference. 
o Computation of prioritized attributes for both the surface and crosswell data. 

 
These data were then incorporated into the project database for analysis and the 

development of the broadband transform function. 
 

• Prior to data analysis, clustering was performed on the data to establish another level of 
data categorization, which was expected to enhance the predictive capability of the 
transform. Specifically, the well logs were clustered to establish lithologic units, and each 
depth interval assigned its appropriate lithology unit. Thus rather than only have log 
curve values as predictors of core properties, lithology was also an input parameter. This 
was used in the log-to-core transform. 
 

• An engineering model was developed using ANN’s to predict core properties (porosity 
and permeability) from log data. This model was to be used downstream of the 
broadband transform which would compute well logs from surface seismic data.  
 

• The broadband transform function was to utilize two cascading ANN’s to predict well log 
responses from surface seismic data. Specifically, an ANN was constructed to predict the 
selected crosswell seismic attributes from the surface seismic attributes, and another 
ANN to compute well log responses from the computed crosswell attributes. Thus, these 
two models would be able to compute log responses at each surface seismic location, 
from which the engineering model would then compute porosity and permeability.  
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Based on the results from the project, the following conclusions have been drawn: 
 

• A reasonable reservoir characterization model was established for the McElroy field 
using clustering methods. The model provided results that appear consistent with known 
conditions at the field, and identified potential areas of poor reservoir quality to be 
avoided for future development. The clustering approach has the advantage over ANN 
methods in that the entire process can be performed with a single, integrated model as 
opposed to multiple, sequential models. 

 
• Experimentation with and without cross-well data suggested that, in this case, cross-well 

data actually harmed model performance. It is believed that the cross-well data was of 
poor quality, which may have introduced error into the process, creating this result.  

 
• The process appeared to provide some, but not a significant level of, vertical resolution 

enhancement to the surface seismic data. Again, the failure of the cross-well data to 
enhance the results may have contributed to this outcome.  

 
• The engineering model to relate well logs to core data was very successful, even in this 

complex reservoir environment. This procedure can be used in other environments to 
provide porosity and permeability estimates at well locations with log data. The 
clustering of well logs did not appreciably improve the process.      
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1.0 Introduction  
 
 
Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide 

substantial benefits for effective oilfield management. By doing so, the predictive reliability of 
reservoir flow models, which are routinely used as the basis for investment decisions involving 
hundreds of millions of dollars and designed to recover millions of barrels of oil, can be 
significantly improved. Even a small improvement in incremental recovery for high-value assets 
can result in important contributions to bottom-line profitability. 

 
This is particularly true when Secondary Oil Recovery (SOR) or Enhanced Oil Recovery 

(EOR) operations are planned. If injectants such as water, hydrocarbon gasses, steam, CO2, etc. 
are to be used, an understanding of fluid migration paths can mean the difference between 
economic success and failure. In these types of projects, injectant costs can be a significant part 
of operating expenses, and hence their optimized utility is critical. 

 
SOR/EOR projects will increasingly take place in heterogeneous reservoirs where 

interwell complexity is high and difficult to understand. Although reasonable reservoir 
characterization information often exists at the wellbore, the only economical way to sample the 
interwell region is with seismic methods. Surface reflection seismic has relatively low cost per 
unit volume of reservoir investigated, but the resolution of surface seismic data available today, 
particularly in the vertical dimension, is not sufficient to produce the kind of detailed reservoir 
description necessary for effective SOR/EOR optimization and planning. 

 
Today’s standard practice for developing a 3D reservoir description is to use seismic 

inversion techniques. These techniques make use of geostatistics and other stochastic methods to 
solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale 
and compare its acoustic response to that actually observed in the field. This method has several 
inherent flaws, such as: 
 

• The resulting models are highly non-unique; multiple equiprobable realizations are 
produced, meaning 

• The results define a distribution of possible outcomes; the best they can do is quantify the 
uncertainty inherent in the modeling process, and 

• Each realization must be run through a flow simulator and history matched to assess it’s 
appropriateness, and therefore 

• The method is labor intensive and requires significant time to complete a field study; thus 
it is applied to only a small percentage of oil and gas producing assets. 

 
Since the majority of fields do not warrant these efforts (today), the result is sub-optimal 

development for many fields. The industry therefore needs an improved reservoir 
characterization approach that is quicker, more accurate, and less expensive than today’s 
standard methods. This will allow more reservoirs to be better characterized, allowing recoveries 
to be optimized and significantly adding to recoverable reserves. 

 
A new approach to achieve this objective was first examined in a Department of Energy 

(DOE) study performed by Advanced Resources International (ARI) in 2000/20011. The goal of 
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that study was to evaluate whether robust relationships between data at vastly different scales of 
measurement could be established using virtual intelligence (VI) methods.  The proposed  

 

 
Figure 1: Pathway to 3D High-Resolution Reservoir Description 

 
workflow required that three specific relationships be established through use of artificial neural 
networks (ANN’s): core-to-log, log-to-crosswell seismic, and crosswell-to-surface seismic 
(Figure 1). One of the key attributes of the approach, which should result in the creation of high 
resolution reservoir characterization with greater accuracy and with less uncertainty than today’s 
methods, is the inclusion of borehole seismic (such as crosswell and/or vertical seismic profiling 
– VSP) in the data collection scheme. As shown in Figure 2, borehole seismic fills a critical gap 
in the resolution spectrum of reservoir measurements between the well log and surface seismic 
scales, thus establishing important constraints on characterization outcomes.  

 
The results of that initial study showed that it is, in fact, feasible to establish the three 

critical relationships required, and that use of data at different scales of measurement to create 
high-resolution reservoir characterization is possible. Based on the results of this feasibility 
study, in September 2001, the DOE, again through ARI, launched a subsequent two-year 
government-industry R&D project to further develop and demonstrate the technology.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Different Scales of Measurement  
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The goals of this project were to: 
 

 Make improvements to the initial methodology by incorporating additional VI 
technologies (such as clustering), using core measurements in place of magnetic 
resonance image (MRI) logs, and streamlining the workflow, among others. 

 
 Demonstrate the approach in an integrated manner at a single field site, and validate it via 

reservoir modeling or other statistical methods. 
 

This report describes the results of that project. 
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2.0 Technical Approach 
 
 
2.1 Analytic Workflow 

  
The analytic workflow utilized for the project is presented in Figure 3. The first step was 

to identify a suitable test site with all of the required data. As described in the next section, the 
selected site was a several-section area in the McElroy Field of West Texas, operated by 
ChevronTexaco, primarily because of the availability of all data types required for the project. 
Once the site was selected and copies of all the data acquired, the analytic process was as 
follows: 

 

 
Figure 3: Analytic Workflow 

 
 

Rock Physics Modeling 
   
A rock physics model was constructed based on the specific reservoir conditions at 

McElroy, and the sensitivity of various seismic attributes to reservoir parameters of interest were 
assessed. This enabled the prioritization of seismic attributes for inclusion in the broadband 
transform.   

  
Seismic Processing 

 
Both the surface and crosswell seismic were then processed to obtain: 
 
• Depth-converted traces to integrate with other reservoir data in the depth domain. 
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• Co-located surface and crosswell traces such that they could be related to one another 
with correct spatial reference. 

• Computation of prioritized attributes for both the surface and crosswell data. 
 
These data were then incorporated into the project database for analysis and the 

development of the broadband transform function. 
 

Clustering 
 
Prior to data analysis, clustering was performed on the data to establish another level of 

data categorization, which was expected to enhance the predictive capability of the transform. 
Specifically, the well logs were clustered to establish lithologic units, and each depth interval 
assigned its appropriate lithology unit. Thus rather than only have log curve values as predictors 
of core properties, lithology was also an input parameter. This was used in the log-to-core 
transform. 

 
Engineering Model 

 
An engineering model was developed using ANN’s to predict core properties (porosity 

and permeability) from log data. This model was to be used downstream of the broadband 
transform which would compute well logs from surface seismic data.  

 
Broadband Transform Function 

 
The broadband transform function was to utilize two cascading ANN’s to predict well log 

responses from surface seismic data. Specifically, an ANN was constructed to predict the 
selected crosswell seismic attributes from the surface seismic attributes, and another ANN to 
compute well log responses from the computed crosswell attributes. Thus, these two models 
would be able to compute log responses at each surface seismic location, from which the 
engineering model would then compute porosity and permeability.  

 
The following sections describe in more detail the procedures and results of each of these 

analytic tasks. Note that topical reports have also been prepared for each task, which provide 
considerably more detail than provided herein and can be obtained by the interested reader.       
 
 
 
 
 
 
 
 
 
 
 
 

 



 7

2.2 Test Site Description and Data Availability 
 
The first step in the project was to locate a suitable test site.  The merits of various 

potential sites, including data availability, resource size, and operator cost-share, were 
considered before ultimately deciding upon the McElroy field, a large oil field in the Permian 
Basin of west Texas, operated by ChevronTexaco (Figure 4). 

 

McElroy was chosen because it met several important requirements: 

• All data types required for the study were readily available, including surface (3D) 
seismic, crosswell seismic, modern logs and extensive core data. 

• The operator (ChevronTexaco) was willing to work with the project team by providing 
access to proprietary data and technical personnel. 

• Successful application of the technique could be immediately applied elsewhere in the 
field, as well as in nearby fields. 

 
On the other hand, the producing horizon, the Grayburg formation, is a complex 

carbonate reservoir.  While it would have been preferred to test the new reservoir 
characterization approach in a less complex (e.g., clastic) reservoir, no such test site with all 
required information could be identified.  Thus the McElroy field was selected as the test site for 
this study. 
 

 
Figure 4:  Major Grayburg Fields Along the 

Central Basin Platform Trend  

McElroy Field 
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The Permian Basin 
 

The Permian Basin of west Texas and southeast New Mexico is a prolific hydrocarbon 
province, second only to Alaska in terms of proved reserves. It has produced billions of barrels 
of oil since the early twentieth century and today produces 17% of the nation’s crude oil and two 
thirds of Texas’ crude oil. Annual production was approximately 340 million barrels of oil 
(MMBO) in 2001. Approximately 22,600 MMBO have been produced through 1998 and another 
4,800 MMBO are classed as proved reserves. 

 
Of note, there are 40+ CO2 injection projects in the Permian Basin producing more than 

20% of the area’s total oil, or more than 140,000 barrels of oil per day (BOPD). These projects 
consume 1 billion cubic feet (BCF) of CO2 daily. Recent studies indicate that there are more than 
50 additional potentially economical CO2 floodable reservoirs in the Permian Basin that 
represent incremental oil reserves of 500 to 1,000 MMBO. Currently, the primary sources of 
CO2 are natural deposits in Colorado, but an increasing amount is expected to be supplied from 
anthropogenic sources that would otherwise be vented to the atmosphere. By improving CO2 
project economics through technology such as that being developed in this project, this 
alternative CO2 sourcing trend could be accelerated, leading to both increased domestic oil 
supply and reduced greenhouse gas emissions. 

 
Geologically, the Permian Basin is divided into the Midland basin on the east and the 

Delaware basin on the west, separated by the Central Basin Platform (CBP), a high structural 
trend running roughly north-south (Figure 4). This broad, shallow uplift was alternately exposed 
to subtidal and supratidal environments as numerous sea level changes caused lowstand and 
highstand tracts to develop. Shallow shelf marine carbonate environments developed along the 
margins of the CBP and today form one of the largest oil producing complexes in the world. 

 
The focus of early development efforts on the CBP was the Grayburg/San Andres 

formation. These Permian-age strata consist of a string of shallow structural and stratigraphic 
carbonate traps located on the margins of the CBP and extending northward onto the Northwest 
Shelf Margin. The map in Figure 4 highlights many of the major fields in this producing trend. 
Figure 5 shows a stratigraphic column in the area from surface through the Permian, with the 
Grayburg highlighted. The strata down through the lower Queen are interbedded siliclastics and 
carbonates. Below that the facies are dominated by carbonates, particularly crestal reef 
formations. 
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Figure 5: Stratigraphic Column of West Texas 

 
The Grayburg Trend 
 

The Grayburg/San Andres trend extends over a 105 mile long north-south fairway from 
the mighty Yates field in the south to Gaines and Yoakum Counties in the north. It is generally 
shallow, lying at an average depth of 3,780 ft., and produces light (32 degree API) low sulphur 
oil from rocks with an average porosity of 12% and permeability in the 5-25 millidarcy (md) 
range. On the south CBP alone the Grayburg/San Andres complex is expected to recover 
approximately 2,712 MMBO of an estimated 10,286 MMBO original oil in place (OOIP).  

 
 
Figure 6 shows a type log through the Grayburg interval and indicates the various 

depositional environments common to the area. Figure 7 is a simplified depositional diagram, 
indicating the cyclicity evident in many of the carbonate reservoirs caused by numerous sea level 
changes.  The western margins of the Grayburg fields on the CBP were generally exposed to 
supratidal environments. Proceeding eastward the facies types pass through the reef itself and 
extend to fore-reef shoals and marine slope deposits as the formations spill into the Midland 
basin.  

 

**
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Figure 6: Type Log of Shallow Permian Basin Formations  

 

 
Figure 7: Simplified Depositional History of Shallow Permian Basin Carbonates  

 
 
The McElroy Field 
 

McElroy field still is one of the top producing fields in Texas, and is in the top 50 fields 
in the U.S. in terms of oil reserves. OOIP is estimated to be 2,544 MMBO of which 600 MMBO 
are expected to be recoverable. Since its discovery in 1926 it has made more than 532 million 
barrels of oil, and is still producing at the rate of 5.5 MMBO annually. The field contains 1,000 
wells dispersed throughout a 31-square-mile area; thus nominal spacing is approximately 20 
acres per well. Nominal expected ultimate recovery (EUR) per well is approximately 600,000 
barrels of oil. Originally, Chevron operated a 22,400 acre area in the southern portion of the 
field, and Texaco operated the 11,600 acre northern portion.  Since the merger of those two 
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companies the entire 34,000 acre field has been under consolidated operatorship. Waterflooding 
operations began in the early 1960’s.  

 
Figure 8 shows a cross-section across the field from west to east and indicates the typical 

geology in the region. Note that dips are fairly shallow on the western side and increase in the 
fore-reef and marine environments on the east as the formation dips into the Midland basin. 

 

 
Figure 8: Regional West-East Cross Section Across McElroy Field 

 
The Study Area 
 

The study area for this project consists of approximately 2.5 square miles near the center 
of the McElroy field (Figure 9). This area has been the subject of intense investigation over the 
past ten years with substantial data being acquired. In part this is because the study area is 
centered on a single well pilot Light Oil Steam Flood (LOSF). The project was a pilot for the 
Huff-N-Puff steam flood method for enhanced recovery. 
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Figure 9: Grayburg Structure Near Study Area  

 
The study area is situated in a portion of the field that encompasses all the various 

depositional environments typical of the Grayburg formation in this region. The central area 
containing the LOSF and areas where cross-well seismic data was acquired is directly atop the 
crestal reef. To the east of this area the formation dips sharply down into the Midland basin. On 
the western side of the study area dips are more shallow and grade into back-reef and lagoonal 
facies. The square outline in Figure 9 denotes a “cutout” portion of a larger 3D survey acquired 
in 2000. This seismic “cutout” defines the extent of the study area. 
 

ChevronTexaco furnished data for 192 wells within the survey area. The wells are 
generally drilled on nominal 20 acre spacing and fully penetrate the Grayburg interval. Of these, 
60 are oil producers, 49 are water injectors, and 74 are either temporarily or permanently 
abandoned; there are also 7 observation wells.  Two are classified as “other”. Many of the older 
wells have substandard logs and log suites and were deemed unsuitable for use in this study. 

 
Of the 192 wells, 59 within the study area are of modern vintage and have complete log 

suites. The surface locations of these wells are shown on Figure 10. Note that the wells are 
randomly scattered within the 3D seismic survey, but are generally situated on the western and 
southern sides of the survey. This is significant in light of the geologic setting. The axis of the 
crestal reef runs roughly north-south through the approximate center of the study area. Many of 
the modern vintage wells penetrate geologic strata that are in the back-reef region of the 
carbonate ramp complex.   

Study Area
N

Study Area
N
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Figure 10: Wells Within Study Area Having Complete Modern Log Suites 

 
Study Dataset 
 

McElroy is a large and significant oilfield. Over the years, ChevronTexaco, has collected 
extensive data in the study area; the data was collected by various investigators in an effort to 
better understand how to maximize oil recovery.  Much of the data is of modern vintage, 
collected during the infill drilling program when the field was reduced to 20 acre well spacing, as 
well as during attempts to use CO2 or steam injection enhanced oil recovery. 
 

ChevronTexaco made available a rich dataset for the purposes of this study. Raw data 
were provided representing the four critical data types; surface seismic, crosswell seismic, well 
logs and core data. In addition, interpretive data such as formation tops and image log 
interpretations were provided to aid in the evaluation of the primary data. The data were 
delivered in digitized, electronic format. Table 1 is a summary of the data received for this 
project. 

Table 1: Summary of Data Received for Study Area 
Data Type Amount Available 

Well Locations 192 
Seismic Survey 2.5 sq. mi. (2000, post-steam) migrated stacked time 
Crosswell Profiles 8 crosswell profile data files (1997, pre-steam) 
Well Logs Complete modern log suites for 59 wells (1984 – 2001) 
Sonic Logs 84 sonic logs over survey area 
Formation Tops Interpreted formation tops (5) in 150 wells 
Image Logs 8 image log files within the survey area 
Core Logs Core analysis logs for 13 cored wells in survey: approx. 

325 ft. of whole core each with core porosity, saturation, 
and permeability measurements on ½ foot intervals. 
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Surface and crosswell seismic data was acquired in several programs before and after the 
initiation of a single–well LOSF pilot conducted in the central well of the cross-well seismic data 
area. This single well pilot used the Huff-N-Puff method with a period of steam injection 
followed by a period of oil production from the same well. In a true Huff-N-Puff project this 
cycle would be repeated over and over again. At McElroy only a single steam injection cycle 
was conducted. 

  
Surface seismic data was acquired before and after steam injection.  Only the 2000-

vintage (post-steam) survey was available for this study. However, due to the small volume of 
steam injected and (very) limited overall effect, most of the area with coincident crosswell and 
surface seismic data was believed to be largely unaffected by the steam, and hence deemed 
suitable for correlation in this study. 

 
The surface seismic consists of about 30,000 traces of time-migrated, stacked P-P 

amplitudes on 55 ft. by 55 ft. bin spacing. There are 175 inlines and 175 crosslines. Trace gathers 
were later obtained, but the quality is poor. The gathers were used, however, to pick first arrivals 
to aid in the seismic time-to-depth conversion process. 

 
The crosswell profile data was obtained between six wells in the center of the study area, 

with the central well being the LOSF pilot well (Figure 10). Data quality varies between profiles, 
with the shorter profiles having the best quality. The source was piezeo-electric and the receiver 
array had 55 clamped geophones. The crosswell data used in this study was the set acquired 
before steam injection.   

 
In terms of geophysical well logs, Table 2 summarizes the curves that comprise a 

complete log suite for the purposes of this study. Each of the 59 selected wells contain full 
coverage for all six log data types across the entire Grayburg interval, some 350 feet per well. 
These additional log data, such as the density porosity log (DPHI), were not used in this analysis, 
however, because they are not available for all the wells.  
 

Table 2: Log Data Type Summary 

Data Type Abbreviation Units Indicator 
Gamma Ray GR API units Shaliness 
Compensated Neutron Log CNL Percent Porosity 
Bulk density Log RHOB gm/cc Porosity 
Sonic Travel Time DT usec/ft Porosity 
Photoelectric Effect PE barns/m2 Mineralogy 
Latero-Log LLD Ohm-m Resistivity 

 
 

2.3 Rock Physics Modeling 
 

 
As described above, the project dataset consisted of a large suite of logs, some core data, 

and both surface 3D and interwell seismic surveys. Because of the significant difference in levels 
of resolution available from surface seismic data (lowest level of resolution), borehole seismic 
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data (much higher level of resolution), and core and log data (highest level of resolution), the 
borehole seismic data was used as an intermediate means of extending the resolution level of the 
much more extensive surface seismic data when building a model of the McElroy reservoir. 

 
Attributes can be computed from either surface or borehole seismic data using specific 

computational algorithms which can help to enhance or detect certain information which is often 
hidden, but inherent within the seismic data.  In order to establish the relationships between 
information available from the seismic data and reservoir properties, rock physics approaches 
were utilized.  Today rock physics is a viable and active area of study, and many useful 
theoretical relationships, as well as physical measurements of rock and fluid properties are 
known and available for use.  Among these are the well-known Biot-Gassmann relations which 
establish relationships between shear and compressional wave velocities, and rock and fluid 
moduli and densities as well as porosity of the reservoir rock.  Using these relationships, the 
effect of changes in any of these reservoir parameters on the recorded seismic data can be 
predicted.  These relationships can also be used as a basis for modeling the actual seismic 
response of the reservoir which can in turn, be used to evaluate the sensitivity in response of the 
various seismic attributes to these changes.  On this basis, those attributes which are most 
sensitive to change and then used for building the reservoir characterization model. 

 
A very specific rock physics model of the McElroy reservoir was constructed, allowing 

us to predict with some accuracy the required bulk and shear moduli and densities of the 
reservoir rock as a function of mineralogy (primarily carbonate) and porosity.  Similar estimates 
of bulk moduli and density of composite pore fluids (typically water/oil/brine or gas) were also 
made.  Having made these estimates, these quantities were entered into the Biot-Gassmann 
relations in order to obtain relationships between these quantities and the resulting shear and 
compressional seismic velocities of the porous fluid-saturated reservoir rock.   

 
Entering specific rock and fluid parameters into the Biot-Gassmann relations leads to 

very organized sets of results which have been catalogued in the form of charts showing 
relationships between various rock and fluid properties and seismic data properties.  In 
particular, we have organized a fairly large volume of rock physics data into charts which detail 
the relationship of seismic parameters including shear and compressional wave velocities, and 
shear and compressional wave acoustic impedances as a function of porosity for specific pore 
fluids and mineralogies.  By varying the pore fluid or mineralogies, we then generated multiple 
curves which allowed us to evaluate the degree of sensitivity of specific seismic parameters to 
changes in mineralogy or pore fluid content, indexed by a range of values of porosity.  Taken 
together, they give a very complete picture of dependencies between seismic parameters and the 
various rock and fluid properties, including porosity, mineralogy, and pore fluid.   

 
In addition to the computational rock physics models, a number of detailed models of the 

McElroy reservoir were built using log and core data, but based on the effect of the individual 
units on seismic response.  Since it is ultimately true that seismic data responds directly to 
changes in acoustic impedance, these models are based on acoustic impedance estimates 
obtained from log and core data.  They differ in complexity, based on the level of dominance of 
the interfaces separating units when viewed as seismic reflectors (interfaces where acoustic 
impedance shows a significant change).  The simplest models consist of units which have the 
greatest effect on reflection seismic data, and these units are then subdivided into units at a finer 
scale, which have a diminished effect on the recorded reflection seismic data. 
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In order to use the considerable amount of rock physics data available from these various 
models to evaluate changes in seismic response, and sensitivity of attributes to these changes, a 
means is required for simulating the seismic data which would result from a specific reservoir 
model.  As a result, we have made use of very sophisticated elastic seismic modeling code which 
allowed us to input a detailed elastic reservoir model, and to simulate the seismic response from 
the model.  This capability allowed us to very accurately simulate both shear and compressional 
wave data, and allowed us to further evaluate the effects of seismic response as a function of 
offset (AVO response).   

 
The seismic modeling code assumes an isotropic elastic earth model which obeys 

Hooke’s Law.   This means that the model is ultimately entered in terms of the elastic Lame’ 
parameters at each point in the model.  These Lame’ parameters can be computed from a 
knowledge of bulk and shear moduli, which become available from our rock physics 
computations, based either on specified reservoir rock and fluid properties, or similar input data 
derived from log and core analysis.  We should point out that the seismic modeling code also 
allows the capability of specifying a complete Q (frequency dependent attenuation) model for the 
reservoir, but without good Q data available from a VSP survey, for example, we have used a 
default constant Q model in our work. 

 
Using all of these capabilities, a large number of models were run, resulting in a number 

of synthetic data sets which allowed us to test the response of different attributes to specific 
levels of change in mineralogy, porosity, and pore fluid content, as well as to complexity of the 
models.  These synthetic data sets were then used to compute and evaluate a reasonably large 
number of standard seismic attributes.  We then applied several different measures to determine 
sensitivity of response of the attributes to specific changes in the model.  These were evaluated, 
and on the basis of this work, ten seismic attributes were chosen for use in our subsequent 
analysis of the McElroy data, Figure 11. 

 

 
Figure 11: Responses of Various Attributes to Changes in Porosity of 5%, 10%, and 15% 

in the Biot-Gassmann Layer 
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The ten attributes which were chosen are listed below, with a brief description, where 
appropriate: 
 
• Trace Differentiation 
• Hilbert Transform (complex part of the analytic trace) 
• Perigram (zero mean of the complex amplitude of the trace) 
• Cosine of Phase (cosine of the instantaneous phase) 
• Perigram * Cosine of Phase (product of these two attributes)  
• Instantaneous Phase  
• Instantaneous Frequency (time derivative of instantaneous phase) 
• Median Smoother (3 point) 
• Absolute Value of Trace 
• Response Phase (instantaneous phase at the trace envelope peaks, in degrees) 
 

A complete topical report has been prepared on this work and can be obtained via the 
references2. 

 
 

2.4 Seismic Data Processing 
 

As elaborated upon elsewhere, the goal was to establish relationships between data of 
different scales using ANN’s for the purpose of improved reservoir characterization.  The data 
range from very fine-scale core measurements to very coarse-scale surface seismic 
measurements connected in between by log and crosswell seismic data. The data provided by 
ChevronTexaco consisted of a small (1.8 by 1.8 mile), 3D, surface seismic survey recorded at the 
McElroy field by Dawson Geophysical, and a total of 8 crosswell seismic profiles recorded by 
TomoSeis Inc.; both datasets were acquired under contract with ChevronTexaco.    The crosswell 
profiles are located near the center to the surface survey.   

 
The crosswell and surface data integration comprised three main tasks. 
 
1. Process two of the crosswell datasets to derive a high-resolution reflection image 

along profiles between the source and receiver wells.   
 
2. Interpolate and resample the 3D surface data in order to create a reflection image 

that is collocated, trace-for-trace, with the reflection image produced from the crosswell data. 
 
3. Convert the 3D, surface survey from time to depth, which required computing a 

3D velocity model using the available sonic logs and the normal moveout velocities of the 
seismic data. 

 
The trace spacing of the surface data was 55 feet, approximately an order of magnitude 

coarser than that of the crosswell data.  The very good data quality plus the low structural relief 
within the McElroy field allowed for the projection of the surface traces onto the crosswell trace 
locations by straightforward linear interpolation. The interpolation was carried out along the 
structural strike and dip as computed from the seismic data   In addition the surface data were 
converted from a time-sample interval of 2 msec to a depth-sample interval of 0.5 feet to 
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conform with the vertical scale of the crosswell image.  Low structural relief at McElroy also 
allowed the time to depth conversion to be carried out by a simple one-dimensional rescaling of 
the traces.  

 
Co-locating the surface traces to the crosswell traces and converting from time to depth 

are felt to be quite accurate given the excellent quality of the surface data, the dense well control, 
and the low relief of the McElroy structure.   The need to use normal moveout velocities for 
depths above the log measurements was also acceptable and provided a good initial alignment of 
the seismic and well log data.   The final alignment was obtained by crosscorrelation between the 
real and sonic-log-generated synthetic traces.    The alignments were smoothly varying across the 
survey area as would be expected if such variations were caused by corresponding variations in 
the near-surface velocity.   The crosscorrelation itself ranged from good to fair, but the strong 
reflections at the Queen and M markers helped make the alignments unambiguous.   

 
The crosswell data were more difficult to analyze due to the high level of tube wave 

noise.   Nevertheless reflection images were computed with a much broader frequency 
bandwidth and consequently a much greater resolution when compared to the surface data.  The 
crosswell reflection images were also nosier and contained many short segments of coherent 
energy, which are probably artifacts of the heavy-duty filtering required to attenuate the tube 
waves.   The A1 and M reflectors could be correlated between the two datasets, but the character 
of the reflection waveforms was, as expected, very different. 

 
The crosswell data quality was in general poor, and the reflection image is much nosier 

than the corresponding image from the surface data, although it is of much higher resolution.   
There are several reflectors that can be correlated between the two images, notably the A1 and M 
horizons within the Grayburg Formation.  Otherwise the two images are remarkably different, 
although this is not surprising given the broader frequency bandwidth and higher noise level in 
the crosswell data, as shown in Figures 12 and 13.   
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  Figure 12:  dy4441 – bo3826 Co-Located Crosswell and Surface Reflections Sections 

 

 
  Figure 13:  bo3826-dy0386 Co-Located Crosswell and Surface Reflection Sections  

 
 
 

A topical report has been prepared on this work and can be obtained via the references3.

2000 ft. 

3000 ft

DY4441 BO3826

2000 ft. 

3000 ft

DY4441 BO3826

2000 ft. 

3000 ft

BO3826 DY0386

2000 ft. 

3000 ft

BO3826 DY0386



 20

2.5 Log Clustering 
 
The goal of this task was to identify (discriminate) rocks of similar depositional 

environment and/or reservoir quality using a specific clustering procedure.  The "stratigraphy" 
developed from this clustering procedure was to be used as a framework for the development of 
the engineering model. 

 
The rocks being studied are from the Permian-aged Grayburg Formation from the 

McElroy Field of west Texas.   Fifty-nine wells from the study area were selected for clustering.  
The wells used were those that had a complete well log suite consisting of RHOB, NPHI, GR, 
DT, and PEF curves.  Clustering was done using the proprietary software application GAMLS 
(Geologic Analysis via Maximum Likelihood System).  

 
GAMLS performs a model-based, multi-dimensional clustering analysis.  During 

clustering, samples (each digitized depth from each well) are probabilistically assigned to a user-
specified number of clusters (modes), as shown in Figures 14 and 15. The clusters, or modes, are 
considered to be analogous to bulk rock types, where "bulk" means that the properties of the 
rocks are derived from both matrix and fluid.  Since all wells are included in the cluster run, 
these "rock types" can be compared, and correlated, among all of the wells. Five variables (well 
log curves, or "tools"), and ten clusters (modes) were used, and an unsupervised type of 
initialization was used, in the cluster analysis described herein.   

 
 

  Figure 14:  Frequency Distribution Curves for Logs 
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Figure 15:  Example Multi-Dimensional Crossplot 

 
 
The results of the 59-well clustering run were studied using graphs and tables.  The 

modes were qualitatively related to reservoir quality using data output tables, crossplots, and 
frequency plots, Table 3.  Also, depth plots (~ cross sections) were generated which permitted a 
visual and qualitative assessment of lateral "bed" continuity and vertical bed thickness and style, 
Figure 16. 

 
Table 3: Multi-Well Clustering Results 

 
 
 

Mode 6 4 2 5 10 8 1 7 9 3
Color gold dk gry purple med blue lt blue lt gry dk grn med grn red pink
% 6.1 3.9 10 17.2 2 0.9 5.9 12 8.8 33.1
Grn Den 2.93 2.86 2.87 2.86 2.88 2.87 2.76 2.77 2.82 2.88
DT 50 59 49 53 53 57 57 52 63 61
CNL 0.02 0.07 0.09 0.14 0.15 0.17 0.18 0.18 0.24 0.24
GR (API) 17 51 14 27 28 54 21 15 39 25
Rock Type Anhydrite Shaley Mixed Mixed Mixed Shaley Mixed Mixed Best Res. Best Res.

Mode 6 4 2 5 10 8 1 7 9 3
Color gold dk gry purple med blue lt blue lt gry dk grn med grn red pink
% 6.1 3.9 10 17.2 2 0.9 5.9 12 8.8 33.1
Grn Den 2.93 2.86 2.87 2.86 2.88 2.87 2.76 2.77 2.82 2.88
DT 50 59 49 53 53 57 57 52 63 61
CNL 0.02 0.07 0.09 0.14 0.15 0.17 0.18 0.18 0.24 0.24
GR (API) 17 51 14 27 28 54 21 15 39 25
Rock Type Anhydrite Shaley Mixed Mixed Mixed Shaley Mixed Mixed Best Res. Best Res.
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Figure 16:  Cluster Assignments Compared to Core Data 

 
The three modes (clusters) with the best reservoir quality were identified on the basis of 

apparent porosity (from mean NPHI) and apparent clay content (from mean GR).  These three 
modes were dominant in the depth ranges between the E and M Grayburg stratigraphic markers.  
The poorest reservoir quality was in modes that were dominant below the M stratigraphic 
marker.  Porosity and permeability values obtained from plugs from the cored well (DY0534) 
nearest to the crosswell seismic area show a similar depth zonation.  Thus, the relative reservoir 
quality inferred from the clustering analysis agrees with the results of empirical measurements 
made on the whole core in terms of overall zonation of the Grayburg Formation, Figure 17. 

 
 

Facies Porosity PermeabilityFacies Porosity Permeability
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Figure 17:  Facies Cross-Section 

 
A general lateral correlation of modes between wells is obvious, but tracing of individual 

beds in a lateral direction (via visual examination of depth plots of mode probability 
assignments) is typically tenuous.  This is interpreted to be due to the fact that the actual 
depositional "beds" are not generally laterally continuous due to the discontinuous nature of 
specific depositional environments. 

 
A topical report has been prepared on this work and can be obtained via the references4. 
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3.0 Results and Discussion 
 

3.1 Log-Core Model 
 
The relationship between well logs and core parameters is strongly non-linear, 

particularly in non-clastic, carbonate rocks such as the Grayburg. With log and core values 
measured at half-foot intervals in ten wells, a large volume of data was available for analysis 
(approximately 6,000 data points – 10 wells x 300 ft/well x ½ ft measurement interval). These 
two attributes of the dataset (complex relationship and large volume of data) suggest ANN’s can 
be an effective method to model the core-to-log relationship.  

 
The strategy for creation of the model consisted of four steps: 
 

1. Construct an ANN model and train it using data from cored wells. 
2. Test the model during training to ensure that it is not memorizing test patterns. 
3. Validate the trained network using data from cored wells that has not previously been 

presented to the network. 
4. Use the trained network to predict core values in wells that do not have whole core 

samples available. 
 

In keeping with standard practice described in the literature, the sample data set was 
broken into subsets consisting of 60% of data used for training, 20% of data used for testing, and 
20% of data used for validation. 

 
Two constraints guided the architectural structure of the ANN used in this analysis: 
 

1. The network must generate predictions of porosity and permeability simultaneously. This 
constraint was imposed by the requirements of the global process which calls for simple 
methods of reservoir characterization. (If we were to create individual models for each 
core parameter, then for each individual log (from crosswell data), then for each 
crosswell attribute (from 3D data), the ultimate workflow would be much more 
burdensome than desired). 

 
2. The network must be able to reliably generalize from training data to the prediction 

mode. This constraint dictates that the internal structure of the neural network be 
relatively simple, with the fewest hidden node layers possible. 

 
The imposition of these two constraints helped narrow the range of possible ANN 

architectures. The optimal architecture was determined to be a three layer model with one input 
layer, one hidden layer, and one output layer. The input well logs were “depth windowed,” 
effectively tripling the apparent number of network inputs based on well logs. Although only six 
input log types were used the effect is to triple the number of log inputs to eighteen. While this 
makes the network architecture appear more complicated there are still only six types of log data 
being used as input. As previously stated, the output layer consisted of both target values, core 
porosity and permeability. 
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The only remaining network variable was the number of nodes in the hidden layer. The 
optimum ANN configuration was determined through trial and error. A number of networks with 
varying numbers of nodes on the hidden layer were constructed and run on the same input 
dataset. The results were noted and compared. For completeness numerous alternate network 
architectures were constructed and tested including several with more than one hidden layer. The 
network which yielded the best results was found to be one with nine nodes on the hidden layer. 
As discussed previously, the input layer consisted of eighteen input nodes, giving a final network 
architecture of 18-9-2. An illustration of this network architecture is shown in Figure 18. 

 

 
  Figure 18:  ANN Model Structure 

 
To test the effect of facies type code clustering (as described in the previous section) on 

ANN performance and the quality of modeling results, the ANN model was run on the same data 
both with and without cluster fuzzy probabilities as input. That is, a network was first 
constructed with six logs multiplied into eighteen inputs. Then the model was modified to 
include not only the eighteen log inputs but the ten fuzzy cluster probabilities as well. For the 
network using clustering fuzzy probabilities the optimum network configuration was one with 14 
nodes on the hidden layer, yielding a 28-14-2 final architecture. 

 
The results from the two networks were then compared to determine whether clustering 

results improved the predictive capability of the model. To assess that, cross-correlation 
coefficients were computed between the measured core data and the values predicted by ANN 
model. Table 4 summarizes the results for the training and testing data. 
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Table 4: Summary of Correlation Coefficients Between Measured Data and Values 

Predicted by ANN’s With and Without Fuzzy Clustering Probabilities as Input 

Parameter  With Fuzzy Probabilities Without Fuzzy Probabilities

Porosity  0.863 0.855 

Permeability  0.843 0.822 
 

As the table shows, using the results of clustering resulted in a slight improvement of the 
correlation between actual data and network predicted values.  One negative impact of using 
fuzzy probabilities as input, however, was a less stable network. With log data alone, network 
performance as exhibited by the error function root-mean-square (RMS), continuously improved 
regardless of how many epochs the network was allowed to process. One model was allowed to 
run nearly one-half million epochs with steady, gradual improvement in fit of predicted values. 

 
 Predicted versus actual porosity and permeability logs based on the model are presented 
in Figure 19.  Note the excellent predictive capability of the model.  Table 5 compares the 
predictive capability of various logs and the ANN model.  Note that the ANN model not only 
provides a superior predictive capability, but also can predict porosity and permeability 
simultaneously. 

 
 

 
  Figure 19:  Actual vs. Predicted Porosity & Permeability 
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Table 5:  Benefits of ANN Model 

This task has demonstrated that core porosity and permeability can be effectively 
predicted from geophysical log data using ANN’s to provide a high (vertical) resolution reservoir 
characterization for subsequent flow modeling and field development optimization. 

 
A topical report has been prepared on this work and can be obtained via the references5. 

 
 

3.2 Broadband Transform using Artificial Neural Networks 
 

In this task, the possibility of designing a multi-scale transform which would accept 3D 
surface seismic data and a set of computed attributes as input, and would produce estimates of 
six well logs at each surface seismic bin location as output, was investigated.  The transform 
itself was constructed from neural networks.  Specifically, the program design included two 
neural networks.  The first transformed 3D surface seismic depth converted data and their 
attributes into estimates of depth converted crosswell reflection data and their attributes.  The 
second neural network was designed to transform the crosswell reflection data and their 
attributes into estimates of six specific well logs.  When applied in cascade, the two neural 
networks effectively transformed surface seismic data and their computed attributes into 
estimates of six well logs at every 3D seismic bin location.  The attributes used were selected as 
a result of analyzing synthetic data generated using rock physics models designed for this 
specific reservoir.   

 
When this program, as originally conceived, was carried out, results were not sufficiently 

good to warrant their use for the purposes of reservoir characterization.  Numerous issues were 
identified which may have played a role in preventing the goals from being reached, and 
attempts were made to resolve them successfully.  In the end, the desired goal of finding a 
transform using two cascaded neural networks which would accept 3D surface seismic data as 
input and produce estimates of six logs as output, was not achieved.     

 
As Figure 20 illustrates, modest predictability of logs was achieved at the center well, but 

these predictions significantly worsened for the outer wells.  Therefore, the development of a 
transform using two cascading ANN’s, as originally conceived was not successful. 
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Figure 20:  Results from Selected Test Wells 
 
 
A topical report has been prepared on this work and can be obtained via the references6. 
 
 
3.3 Broadband Transform using Clustering 

 

Due to the apparent failure of the ANN approach for transform development, an 
alternative procedure was developed that permitted the integration of data types of four different 
scales of resolution: core plugs (porosity and permeability), well logs (RHOB, NPHI, GR, DT, 
and PEF), crosswell seismic (XS) attributes, and surface seismic (SS) attributes.  The approach 
used was a clustering procedure which permitted data from all four sample types to be used to 
identify samples which had common properties (common "signal").  Each sample was assigned 
probabilistically to one or more "rock types" (modes).  Once a "model clustering" analysis was 
made, the model was used in a predictive mode to estimate values for missing data in a suite of 
samples for which much of the data was not known. 

 
Many clustering analyses were made to identify the best combination of data types and 

work flow that could be used to generate a model clustering run that then could be used to 
predict (or, "estimate") missing (unknown) data.  The specific goal was to generate a model 
cluster run that could be used to estimate porosity and permeability at the location of SS traces in 
a 3D volume.  The validity of these model cluster runs was checked using a series of "holdout" 
tests (Figures 21 & 22).  The model clustering run ultimately used (to generate porosity and 
permeability profiles) was built using 11 variables from the four data types:  core porosity, core 
permeability, well log acoustic impedance (computed from RHOB and DT logs), four XS 
attributes, and four SS attributes.   

 
 

DY4441 BO3826 DY0386 BO3825 BO3828 BO3829 DY0534

Sonic Scatter Plot 0.5940 0.4827 0.3146 0.0125 0.1465 0.0005 0.0366
RHOB Scatter Plot 0.6027 0.1094 0.0287
PE Scatter Plot 0.3616 0.1166 0.0034
LLD Scatter Plot 0.5319 0.0258 0.0009
GR Scatter Plot 0.3882 0.1465 0.0474
CNL Scatter Plot 0.6180 0.0014 0.0245

Actual vs. Predicted Logs (R2)
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Figure 21:  Porosity Predictions for Holdout Wells 

 

 
Figure 22:  Permeability Predictions for Holdout Wells 
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The model clustering used data from 15 wells:  five cored wells with SS data, six cored 
wells with no SS data, and 3 wells located at the ends of two XS lines (one of the XS wells was 
used twice, with different sets of XS data).  For all wells, the SS traces closest to the wells were 
used.  The combination of the various data types generated from these 15 wells permitted the 
generation of the model clustering run that was used.  The depth interval for which the model 
clustering run was developed and over which estimates of P&P were then made was about 350 
feet.  Core data indicated that the porosity generally increased down-section in the upper part of 
this interval and then decreased through the lower part of this interval.  The core permeability 
followed a trend similar to the core porosity.  However, these changes were not smooth with 
depth because of the thin-bedded nature of flow units.  The well logs do not have the vertical 
resolution to "see" these small-scale changes in porosity and permeability, and also the SS traces 
do not "see" these changes. 

 
Estimated porosity and permeability (P&P) profiles were generated over this ~ 350 foot 

interval for SS traces within a coarse grid and a fine grid centered across the XS area in the 
middle of the overall study area (Figures 23 – 25).  The P&P profiles generally showed the same 
trend of P&P exhibited by the core data.  The dense spacing of the profiles permitted a detailed 
visualization of the geometry of high-reservoir quality zones (high P&P zones).  In particular, 
there were two areas (one to the NE and one to the SE) where low-quality reservoir rocks were 
predicted throughout the 350 foot interval. 

 
 

 
Figure 23:  Inline/Crossline Scheme 
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Figure 24:  3D Porosity Cube 

 

 
Figure 25:  3D Permeability Cube 

 
 
The vertical resolution of the P&P trends was perhaps slightly better than the vertical 

resolution of the SS attribute curves, but did not approach the vertical resolution of the core data 
(Figure 26).  Comparison of the porosity trend at a given SS trace within the XS area with the 
porosity profile from the closest well indicated that the best correlation coefficient was obtained 

NN
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(between core porosity data and predicted porosity data) after the core data was smoothed using 
a median filter of 30 to 40 feet. 

 

 
Figure 26:  Some Improvement in Vertical Resolution Achieved 

 
Generation of P&P profiles using a second model clustering analysis in which XS 

attributes were not included resulted in P&P profiles that did not differ significantly from those 
estimates generated using the model clustering analysis that included the XS attributes (Figure 
27).  This indicates that inclusion of the XS data did not significantly increase the accuracy or 
vertical resolution of the predictions.  The reason(s) for this could be due to the poor data quality 
of the XS data and/or due to the inherent inability of the model to generate P&P profiles of a 
higher frequency than that of the SS data (the SS data was the only input in the prediction step of 
the analysis). 
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Figure 27:  Porosity Predictions from Surface Seismic, w/ and w/o Xwell 

 
 
A primary suspicion concerning the poor quality of the XS data comes from the 

following argument.  In these rocks, porosity should be inversely proportional to the well log 
acoustic impedance (WL_AI); crossplots show that this is so.  Also, crossplots show that 
porosity is generally inversely proportional to SS acoustic impedance (SS_AI), although at a 
much poorer level of correlation than that for the well logs.  However, there is virtually no 
correlation of porosity with the XS acoustic impedance data (XS_AI); this strongly suggests that 
the XS data did not respond to the properties that are related to porosity.  And, this would explain 
why the inclusion of the XS data did not increase the accuracy or resolution of the predicted 
porosity profiles along the SS traces. 
 

A topical report has been prepared on this work and can be obtained via the references7. 

 

3.4 Reservoir Characterization Results 
 
Unfortunately, completely independent reservoir characterization data with which to 

validate the surface seismic based porosity and permeability predictions using the clustering 
model was not available. Therefore, several reservoir property cross-sections were generated 
from using the model to compare to what was generally known for this area of the field. First, an 
east-west porosity cross-section was created, which appeared to reasonably identify the A1 and 
M horizons, as well as their dipping nature to the east (Figure 28). 
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Figure 28:  E-W Cross-Section 

 
A close-up comparison in the cross-well area similarly seemed to replicate the porosity 

and permeability trends in that area (Figure 29). Figure 30 illustrates the improved resolution 
provided by the cross-well data.  

 

 
Figure 29:  Close-Up in Crosswell Area 
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Figure 30:  Fine Grid vs. Coarse Grid 

 
Finally, extension of the reservoir characterization to the edges of the study area appear 

to identify at least two areas of low reservoir quality (Figures 31 and 32).  

   
Figure 31:  Low RQ Areas Identified 
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Figure 32:  Implied Poor Quality Reservoir Areas 

 

Red = low RQ
Blue = limits of prediction area

Red = low RQ
Blue = limits of prediction area



 37

4.0 Conclusions  
 
Based on the results from the project, the following conclusions have been drawn: 
 

• A reasonable reservoir characterization model was established for the McElroy field 
using clustering methods. The model provided results that appear consistent with known 
conditions at the field, and identified potential areas of poor reservoir quality to be 
avoided for future development. The clustering approach has the advantage over ANN 
methods in that the entire process can be performed with a single, integrated model as 
opposed to multiple, sequential models. 

 
• Experimentation with and without cross-well data suggested that, in this case, cross-well 

data actually harmed model performance. It is believed that the cross-well data was of 
poor quality, which may have introduced error into the process, creating this result.  

 
• The process appeared to provide some, but not a significant level of, vertical resolution 

enhancement to the surface seismic data. Again, the failure of the cross-well data to 
enhance the results may have contributed to this outcome.  

 
• The engineering model to relate well logs to core data was very successful, even in this 

complex reservoir environment. This procedure can be used in other environments to 
provide porosity and permeability estimates at well locations with log data. The 
clustering of well logs did not appreciably improve the process.      
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