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ABSTRACT

Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the

prediction of future oil production, estimation of the location of bypassed oil, and optimiza-

tion of reservoir management. The volume of data that can potentially provide information

on reservoir architecture and fluid distributions has increased enormously in the past decade.

The techniques developed in this research will make it easier to use all the available data

in an integrated fashion. While it is relatively easy to generate plausible reservoir models

that honor static data such as core, log, and seismic data, it is far more difficult to generate

plausible reservoir models that honor dynamic data such as transient pressures, saturations,

and flow rates. As a result, the uncertainty in reservoir properties is higher than it could

be and reservoir management can not be optimized. In this project, we have developed

computationally efficient automatic history matching techniques for generating geologically

plausible reservoir models which honor both static and dynamic data. Specifically, we have

developed methods for adjusting porosity and permeability fields to match both production

and time-lapse seismic data and have also developed a procedure to adjust the locations of

boundaries between facies to match production data. In all cases, the history matched rock

property fields are consistent with a prior model based on static data and geologic informa-

tion. Our work also indicates that it is possible to adjust relative permeability curves when

history matching production data.

xii



EXECUTIVE SUMMARY

In the performance of research for this project, we have developed algorithms and software

for making optimal use of oilfield logs, production data, and time-lapse seismic data to

better map the flow properties of the reservoir. The method efficiently adjusts gridblock

values of permeability and porosity in a reservoir simulation model until the predictions

from the model match the observations as closely as possible. For reservoirs whose properties

are determined primarily by the geolgic facies with unknown boundary locations, we have

developed methods for estimating the boundary locations. Although time-lapse seismic data

is not widely available, the data are shown to be effective for mapping flow properties in the

regions between wells, even when the signal to noise ratio is fairly low.

In our work, data integration is done within the framework of Bayesian statistics which

provides a theoretical basis for the automatic history matching of multiphase flow production

data to construct estimates or realizations of reservoir variables that are consistent with

time-lapse seismic data, production data and static data obtained from logs, cores and

geologic and geophysical interpretation. Because we will always use a reservoir simulator to

calculate production data for a given reservoir description, it is convenient to include reservoir

simulator gridblock log-permeabilities and porosities in the set of reservoir variables to be

estimated by history-matching, but reservoir variables may also include parameters that

characterize relative permeability curves and the locations of boundaries between facies.

In the Bayesian setting, the automatic history matching of production and/or time-lapse

seismic data requires the minimization of an objective function which consists of the sum

of a regularization term and production data mismatch terms. The regularization term

encapsulates prior geologic information on the distribution of rock properties and facies

distributions.

Early in the life of this project, we implemented a Gauss-Newton method and a modi-

fied Levenberg-Marquardt method for automatic history matching. Our automatic history

matching procedure is founded on the development and implementation of a discrete ad-

joint method for calculating the sensitivity of three-phase flow production data to reservoir
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variables (model parameters.) To the best of our knowledge, this is the first time that an ad-

joint method has been coupled with a simulator based on a fully-implicit, three-dimensional,

finite-difference simulator to calculate the sensitivity of pressure, producing gas-oil ratio and

producing water-oil ratio production data to reservoir variables under three-phase flow condi-

tions. However, it is feasible to calculate the sensitivity coefficients with the adjoint method

only when the total number of data to be history matched is small. As our objective was

to develop an automatic history matching procedure that is applicable to large scale history

matching problems, we were forced to develop and implement an optimization algorithm that

is far more efficient than the Gauss-Newton method or the traditional Levenberg-Marquardt

modification of the Gauss-Newton method, which are efficient only for cases where the num-

ber of data or number of parameters are small. Here, large scale history matching problems

refer to cases where the number of parameters adjusted range from several hundred to tens

of thousands and the number of production and seismic data is also large (several dozen to

several thousands). For large scale problems, we implemented a version of a scaled limited

memory Broyden-Fletcher-Goldfarf-Shanno (LBFGS) algorithm to obtain a history match

by minimizing the appropriate objective function. In some cases, we found that a straightfor-

ward implementation of the LBFGS algorithm results in a history-matched reservoir model

that is inconsistent with geological information. To avoid such problems, we introduced

scaling, damping and constraints into the LBFGS algorithm. With these procedures, the

resulting LBFGS has proved to be a robust and computationally efficient algorithm for large

scale history matching problems. The reliability of the LBFG algorithm is illustrated with

specific history matching examples.

We have also introduced uncertainty into the relative permeability curves under the

assumption that relative permeability curves can be described by power law models. Under

this assumption, we have demonstrated that it may be possible to adjust prior relative

permeability curves obtained from laboratory data when history matching production data.

We have also developed techniques to integrate time-lapse seismic data into the reservoir

description. Because time-lapse seismic data covers the areal extent of the reservoir and is

related to vertically averaged pressure and fluid saturations, it is clear that matching these

seismic data, simultaneously with production data, will reduce the uncertainty in our esti-

mates of the rock property fields. We have developed an adjoint method so that the LBFGS

algorithm can also be used to adjust permeability and porosity fields by history matching

time-lapse seismic data; we provide examples to illustrate the utility of this procedure.

Facies (defined here as regions of relatively uniform petrophysical properties) are common

features of all reservoirs. Typically, the variation of any rock property between facies is

2
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much greater than the variation of the property within a specific facies. Because of this, it

is important to estimate facies boundaries in the history matching process. In this work, we

have developed a truncated plurigaussian model for the generation of facies maps. Unlike

previous implementations of this method, we have used intersecting lines as thresholds. With

this approach, we show that it is still possible to (1) generate a rich variety of textures and

shapes, (2) estimate the locations of the threshold lines and (3) generate approximations

of the sensitivity coefficients needed to condition reservoir models to facies distributions by

history matching production data.

3



Chapter 1

INTRODUCTION

The goal of this project was to develop computationally efficient automatic history matching

techniques for generating geologically plausible models that honor both static and dynamic

data. The emphasis was on developing techniques that are applicable for large scale reservoir

simulation models where the number of reservoir variables is large and the number of dynamic

data to be matched can also be large. For such large scale problems, the feasibility of

automatic history matching requires the solution of two related problems, a robust and

efficient optimization algorithm and an efficient method for computing the sensitivity of

data to reservoir variables that are required by the optimization algorithm. Here, reservoir

variables include reservoir simulation gridblock porosities and log-permeabilities and may

also include parameters defining power law relative permeability curves as well as parameters

defining a model for the distribution of geological facies. A major accomplishment of this

project was the development and implementation of a limited-memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) for matching dynamic data in Bayesian framework (Zhang and

Reynolds, 2002a; Gao and Reynolds, 2004). At each iteration, this algorithm requires no

sensitivities other than the calculation of the gradient of the objective function which we

wish to minimize to obtain a history match of production data. This objective function

includes both a production data mismatch term and a model mismatch term where the

model mismatch term is included to constrain the history-matched model to static data. The

gradient of the objective function with respect to the reservoir variables can be efficiently

calculated using the implementation of the adjoint method developed by Li et al. (2003a) for

coupling with a three-phase flow reservoir simulator based on a fully-implicit finite difference

method. While the LBFGS algorithm uses the adjoint method to compute the necessary

gradients, it may occasionally require special implementations such as data damping to

control overshooting. Rescaling of model parameters and a judicious choice of a line search
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algorithm may further improve its computational efficiency.

Because of the limited gradient information required by LBFGS algorithm and the relia-

bility of the adjoint, it became clear during this research project that, at least conceptually,

one could history-match time-lapse seismic data as well as production data. Thus, even

though the original goal of this research project did not include the incorporation of seismic

data, the adjoint method was extended to include the calculation of the gradient of time-lapse

seismic data with respect to permeability and porosity fields. With this modification, we

were able to apply the LBFGS algorithm to simultaneously history match both production

(pressures, GOR and WOR) and time-lapse seismic data (Dong and Oliver, 2003).

Time-lapse seismic is the process of repeating 3D seismic surveys over a producing reser-

voir to monitor changes in saturation and pressure. The potential impact on reservoir en-

gineering and reservoir management is large because time-lapse seismic may allow direct

imaging of rock properties that are closely related to vertically averaged fluid saturations

and pressure. This is much different from the current limitation of measurements of these

quantities at well locations. In general, seismic images are sensitive to the spatial variation

of two distinct types of reservoir properties (Arenas et al., 2001):

• Non-time-varying static geologic properties such as lithology, porosity, cementation,

and shale content.

• Time-varying dynamic fluid-flow properties such as fluid saturation and pore pressure.

If data were available from only one 3D seismic survey, it would not be possible to

differentiate between the effects of static features and those due to changes in saturation and

pressure. By comparing the data from 3D surveys acquired at different times in the same

location, however, it is possible to eliminate the effects of unknown static properties to focus

on the dynamic changes in production related properties.

The simplest, most direct method of using time-lapse seismic data is to qualitatively

monitor reservoir changes due to production. In this approach, one simply identifies regions

in which the amplitude or impedance has changed with time and attributes these changes to

changes in saturation, pressure, or temperature. The first tests of this concept were carried

out by Arco in the Holt Sand fireflood from 1981 to 1983 (Hughes, 1998). Similar studies

have been reported by Cooper et al. (1999) at the Foinhaven Field and Lumley et al. (1999)

at the Meren Field in Nigeria. The primary objectives at Foinhaven were simply to map

fluid movements and to identify by-passed oil. The authors of the study concluded that the

time-lapse signal qualitatively agreed with the expected reservoir performance. At Meren,

the goal was to identify pathways of injected water, sealing faults, and compartments that
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may have by-passed oil. The authors concluded that the data was successful in achieving

these objectives.

The other, more difficult, approach is to use the time-lapse data to estimate the reservoir

flow parameters, such as permeability and porosity. In studies to date, the sensitivity of

time-lapse seismic data to changes in model parameters has either been computed by the

finite-difference method (Huang et al., 1997, 1998, 2001; van Ditzhuijzen et al., 2001) or the

gradient simulator method (Landa and Horne, 1997). It is not feasible to compute sensitivity

coefficients using either of these methods when the number of model parameters is large,

however. The only reasonable approach is to use the adjoint method to integrate seismic

impedance data into our objective function and to compute the sensitivity of data to model

parameters and this is the approach followed in this work.

Although the simplest approach to integrate static data is to lump all static data into

a prior geostatistical model and then apply Bayes theorem to derive a posteriori pdf which

integrates static data, production data and seismic data, we have also developed methodology

to incorporate more detailed geology using a facies model. Facies (defined here as regions

of relatively uniform petrophysical properties) are common to all reservoir. Because the

variation of rock properties between facies is normally far greater than the variations within

an individual facies, knowledge of the locations of boundaries between facies diminishes the

uncertainty in the prediction of reservoir performance and increases our ability to optimize

reservoir management. In this work, we developed a truncated pluri-Gaussian model for the

description of reservoir boundaries. The truncated plurigaussian is attractive for modeling

facies for the following reasons:

1. The model is capable of generating a wide variety of facies shapes and neighbor rela-

tions.

2. The model is based on Gaussian random fields, which are well-suited to current in

history matching codes.

3. The truncation, or threshold maps, can be described by relatively few parameters.

In the course of this project, we have developed procedures to solve two aspects of the

history matching problem. The first problem has to do with the specification of a prior

geostatistical model, the purpose of which is to ensure plausibility of realizations. This

is considerably more complex for the truncated plurigaussian model than for many other

geostatistical models because it is necessary to specify at least two covariance models (types,

ranges, variances, and orientations), as well as the threshold parameters for the truncation.
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The second problem is adjustment of the facies boundaries for a fixed set of geostatistical

model parameters.

While our primary focus has been on estimation of log-permeability and porosity fields

and facies boundaries, we have also investigated the estimation of parameters defining power-

law relative permeability curves from production data. The basic idea is not new; Archer

and Wong (1973) used a trial and error approach (manual history matching) to estimate

relative permeability curves by history matching laboratory core flood data and Sigmund

and McCaffery (1979) used automatic history matching (nonlinear regression) for the same

purpose. However, both authors estimated only the two parameters defining the shape of

the relative permeability curves. Later, Kerig and Watson (1987), Kerig and Watson (1986)

and Watson et al. (1988) applied splines to obtain a more general representation of relative

permeability curves. Of the spline functions they considered, B-splines were found superior

in that the coefficients of the B-spline representations of the relative permeability curves

represent the independent adjustable parameters, and with parabolic B-splines, it is easy to

constrain the B-splines to be monotonic although there is no guarantee that they will be

concave up.

The most direct precursors of our work on estimating relative permeability curves is the

work of Lee and Seinfeld (1987) and Yang and Watson (1991). Lee and Seinfeld (1987)

considered the simultaneous estimation of the absolute permeability field and relative per-

meabilities for a two-dimensional, two-phase flow oil-water system. They assumed power

law relative permeability curves and assumed that the end point values of relative perme-

abilities were known. Thus only the two exponents in the power law relative permeability

functions were estimated. In the specific examples considered, they matched pressure and

water cut data at wells producing from an oil reservoir under waterflood. Tikhonov (1963)

regularization was used to stabilize the nonlinear least squares problem. Matching of data

was accomplished by a three-step process with the steepest descent algorithm applied for

minimization of the objective function which includes the sum of squared data mismatch

terms. In the application of steepest descent, the gradient of the objective function was

calculated using the adjoint method (Chen et al., 1974; Chavent et al., 1975). Yang and

Watson (1991) considered the estimation of relative permeability curves using a Bayesian

approach with relative permeability functions modeled as a linear combination of B-splines.

In this approach, the objective function to be minimized is the sum of two terms, a pro-

duction data mismatch term and a term which measures the deviation from a prior relative

permeability model. (A prior model would typically be developed from laboratory core floods

or by analogy with similar reservoirs.) They considered only homogeneous reservoirs and
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assumed that all physical properties except relative permeabilities were known. Minimiza-

tion of the objective function was accomplished with a Broyden-Fletcher-Goldfarb-Shanno

optimization algorithm. They illustrated their methodology by applying it to a synthetic

two-dimensional, two-phase flow waterflooding problem with a single injection well and a

single producing well. They matched pressure data at both wells and WOR data at the

producing well. A thorough review of other work on the estimation of relative permeability

curves can be found in Reynolds et al. (2004).

In this project, we consider the simultaneous estimation of the absolute permeability field

and relative permeability curves from three-phase flow production data. Irreducible water

saturation, critical gas saturation and residual oil saturations are assumed to be known.

The two-phase relative permeability curves for an oil-gas system and the two-phase relative

permeability curves for an oil-water system are represented by power law models. The three-

phase oil relative permeability curve is calculated from the two sets of two-phase curves using

Stone’s Model II. The adjoint method is applied to three-phase flow problems to calculate the

sensitivity of production data to the absolute permeability field and the parameters defining

the relative permeability functions. Using the calculated sensitivity coefficients, absolute

permeability and relative permeability fields are estimated by automatic history matching of

production data. A prior model for absolute permeability and relative permeability param-

eters is assumed to provide regularization, i.e., Bayesian estimation is applied to generate

estimates. Model parameters, which are estimated by automatic history matching of produc-

tion data, consist of gridblock absolute log-permeabilities and the parameters defining the

relative permeability curves. As the example problems considered here are relatively small,

we apply the Levenberg-Marquardt algorithm to do history matching. As noted above the

estimation of relative permeability from production data is not a new problem, but to the

best of our knowledge, our work represents the first attempt to estimate three-phase relative

permeabilities by history matching.

As noted previously, our focus is on large scale problems where the number of model

parameters and number of model parameters are both large. One way to attempt to deal

with such problems is via reparameterization by reducing the number of model parameters

(reservoir variables). This type of approach has a long history beginning with the pioneering

work on zonation of Jacquard and Jain (1965) and Jahns (1966) and continuing today with

work on adaptive parameterization; see, for example, Grimstad et al. (2001). During the first

year of this project report, we investigated reparameterization based on subspace methods

(Kennett and Williamson, 1988; Oldenburg et al., 1993; Oldenburg and Li, 1994; Reynolds

et al., 1996) to reduce the number of parameters directly estimated in the optimization
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process. Our results on this approach were summarized in Abacioglu et al. (2001) and

are presented in detail in Abacioglu (2001). These references considered only single-phase

problems. Based on these results, we believed that algorithms that require only the gradient

of the objective function and do not directly form the matrix of sensitivity coefficients would

prove to be more efficient than subspace methods for large scale history matching problems.

Three possibilities exist, truncated Newton (Nash, 1985), nonlinear conjugate gradient, and

quasi-Newton methods. As discussed later, our intuition suggests that it will be difficult to

implement the truncated Newton method in an efficient way for large scale problems and

thus, we focused on nonlinear conjugate gradient and quasi-Newton methods. Quasi-Newton

methods have been employed previously in automatic history matching-problems by Yang

and Watson (1988), Masumoto (2000) and Savioli and Grattoni (1992). While these studies

generally found that a self-scaling BFGS method is more robust and computationally efficient

than CG, steepest descent and standard unscaled BFGS algorithms, the number of reservoir

variables estimated was less than 25 in all examples considered. Thus, it is impossible to draw

any conclusions from their results about how these algorithms will perform when the number

of reservoir variables to be estimated range from several hundred to tens of thousands.

Quasi-Newton (variable metric) methods, which are based on generating an approxima-

tion to the inverse of the Hessian matrix, require only the gradient of the objective func-

tion and thus avoid the computation of individual sensitivity coefficients needed to directly

form the Hessian matrix. Here, only the Broyden-Flecher-Goldfarb-Shanno (BFGS) quasi-

Newton method is considered since it has proved to be more robust in practice than other

algorithms; see Kolda et al. (1998). It is well known that scaling can improve the conver-

gence attributes of quasi-Newton methods, and numerous suggestions have been made for

calculating scaling factors; see, in particular, Oren and Luenberger (1974) and Shanno and

Phua (1978). We identify scaling procedures that have worked well for the limited number

of history matching problems that we have tried. For large scale optimization problems,

memory requirements may be reduced by replacing the BFGS algorithm with the limited

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm in the form developed and

implemented by Nocedal (1980).

Similar to quasi-Newton methods, the nonlinear conjugate gradient algorithm does not

require computation of the Hessian matrix; only the gradient of the objective function is

required. Here, we use the Polak-Ribière form of the nonlinear conjugate gradient algo-

rithm; see Fletcher (1987). Makhlouf et al. (1993) applied the conjugate gradient method to

estimate 450 gridblock permeabilities by history matching production data obtained under

multiphase flow conditions. In one example, 110 iterations were required to obtain conver-
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gence. In the second example considered, 222 iterations were required to obtain conver-

gence. However, the authors apparently did not use preconditioning. Because the efficiency

of the conjugate gradient (CG) method depends primarily on the preconditioner used, we

attempted to develop preconditioners to obtain an efficient implementation of the nonlinear

conjugate gradient algorithm. Although the two preconditioners we tried improved the per-

formance of the CG method, the resulting algorithms are still significantly less robust than

appropriately scaled BFGS and LBFGS algorithms.

It is important to note that for cases where the number of data and or the number of model

parameters is small, the Gauss-Newton (GN) method or a modified Levenberg-Marquardt

(MLM) method can be used successfully to history match production data (pressures, water-

oil ratios and gas-oil ratios.) In fact, these algorithms have been applied in our work on

estimating the parameters defining power law relative permeability. When either the MLM

or GN method is used, all sensitivities necessary to form the Hessian are computed. If the

number of model parameters (reservoir variables) to be estimated is small, the sensitivity of

production data to model parameters can be computed by the so-called gradient simulator

method (Anterion et al., 1989; Yeh, 1986), whereas, if the number of dynamic data to be

history matched is small but the number of model parameters is large, sensitivities can

be computed with the adjoint method (Chen et al., 1974; Chavent et al., 1975) using the

multiphase, multidimensional implementation of the adjoint method developed by Li et al.

(2003a).

All results presents in this report are given in oil field units.
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Chapter 2

HISTORY MATCHING OF DATA

2.1 Model Estimation and Simulation

Here, we introduce the basic notation for the history matching problem in a Bayesian setting.

This includes definition of the model or model parameters and the a posteriori probability

density function (pdf) for these parameters. This pdf, which is conditional to observed data,

determines the set of plausible reservoir descriptions. We discuss the computation of the

maximum a posteriori (MAP) estimate of reservoir variables. The MAP estimate is the

model which maximizes the a posteriori pdf and is thus conveniently referred to as the most

probable model. A method for sampling this pdf to generate multiple realizations of reservoir

variables is also discussed.

2.1.1 The Prior Model

The reservoir is assumed to occupy the volume Ω. Although it is not necessary, for simplicity,

we often use test examples where the reservoir is assumed to be a rectangular parallelepiped

which occupies the region

Ω = {(x, y, z) | 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}. (2.1)

The forward model is a fully-implicit finite-difference simulator based on a block centered

grid. The principle permeability directions are assumed to be aligned with the coordinate

directions so that the permeability tensor is diagonal. Fluid properties are assumed to be

known. Given two-phase oil-water and two-phase oil-gas relative permeabilities, the three-

phase oil relative permeability is constructed from Stone’s Model II; see Aziz and Settari

(1979). Wellbore constraints are handled using the equation of Peaceman (1983).
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Although many examples are presented in terms of a rectangular reservoir, non-rectangular

reservoirs can be considered using two features of the simulator. First, grid cells can be made

inactive by assigning zero permeabilities and nonzero porosities to those cells. Secondly, even

though the simulator is based on using a specified number of “layers” in the z direction, the

top depth of the reservoir can be a function of (x, y) and the vertical dimension (∆z) can be

different for each gridblock in a “layer.” This provides significant flexibility in defining the

geometry of the reservoir; for example, an anticline can be modeled.

Here, we assume model parameters or reservoir variables include only gridblock porosities,

horizontal log-permeabilities, vertical log-permeabilities, the skin factor at each well and

parameters defining power law relative permeability curves. In a later chapter, we discuss our

work on estimating the location of the boundaries between facies and this model parameters

can include parameters defining the boundaries between facies. For simplicity in exposition,

we write the vector of model parameters for the case where permeability is areally isotropic so

that kx = ky. However, the methodology presented applies to the fully anisotropic case. For

the areally isotropic case, the model parameters may include the reservoir simulator gridblock

porosities, horizontal log-permeabilities, vertical log-permeabilities, well skin factors and

parameters defining power law relative permeability curves. We estimate at most one skin

factor per well, so the number of skin factors to be estimated is equal to the number of wells.

Thus, if there are N simulator gridblocks and Nw wells, the total number of model parameters

is equal to Nm = 3N + Nw + Nrp, where Nrp is the number of parameters defining relative

power law relative permeability curves; see Chapter3. Specifically, the model (or vector of

model parameters, or set of reservoir variables) is given by

m = [mT
φ , mT

k , mT
kz

, mT
s , mT

rp]
T , (2.2)

where mφ is an N -dimensional column vector with its jth entry equal to the porosity of

gridblock j, mk is an N -dimensional column vector with its jth entry equal to the horizontal

log-permeability for gridblock j, mkz is an N -dimensional column vector with its jth entry

equal to the vertical log-permeability for gridblock j, ms is an Nw dimensional column vector

with its jth entry given by the skin factor at the jth well, and mrp is the vector of parameters

defining the power law relative curves. These reservoir parameters are modeled as random

variables, so m is a random vector. From a purely history matching point of view, we wish

to construct an estimate of m from production and time lapse seismic data (dynamic data)

and static data. However, there are an infinite number of models which will give equally

reasonable matches of the data, and it is desirable to define a procedure for generating a

particular estimate or to characterize the uncertainty in reservoir descriptions. From both the

philosophical and practical points of view (see Tarantola (1987) and Omre et al. (1993)), the
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most challenging part of the inverse problem is the determination of a representative pdf for

reservoir parameters. Similar to other work in automatic history matching (Oliver, 1994; Chu

et al., 1995a; He et al., 1997; Wu et al., 1999), we follow ideas that can be found in Tarantola

(1987) and simply assume that a prior geostatistical model for mr = [mφ, m
T
k , mT

kz
]T can

be constructed from static data, e.g. log, core and other geologic data. We also assume a

prior model can be constructed for the well skin factors and the parameters defining relative

permeability curves. One may be able to construct a prior model for well skin factors from

completion information or from well test data and analogue reservoirs or laboratory data can

be used to generate a prior model for power law relative permeability curves. These prior

model can of course be highly uncertain. In fact, the point of history matching production

and/or seismic data is to reduce the uncertainty in our reservoir model. In our work, we

use a prior geostatistical model based on the assumption that mr can be represented by a

multivariate Gaussian distribution with a given mean and covariance matrix. In practice, the

prior covariance matrix for the rock property fields can be generated from semivariograms by

assuming that porosity and horizontal and vertical permeability can be modeled as stationary

random functions. In our implementation, we make this assumption and then apply the Xu

et al. (1992) screening hypothesis to generate the prior covariance matrix for mr; see, Chu

et al. (1995b). In the prior model, each well skin factor is treated as an independent Gaussian

variable with specified mean and variance. If the skin factor was estimated by fitting pressure

data with a classical well testing model solution using nonlinear regression, then the estimate

of the skin factor would be its prior mean and its variance can be constructed directly from

the same information used to construct confidence intervals. The prior model for set of

parameters defining relative permeability curves assumes these parameters can be modeled

as independent Gaussian random variables.

The vector of prior means is given by

mprior =


mφ,prior

mk,prior

mkz ,prior

ms,prior

mrp,prior

 . (2.3)

Cφ denotes the prior covariance matrix for mφ, Ck denotes the prior covariance matrix for

mk and Ckz denotes the prior covariance for mkz . Cφ,k denotes the cross covariance matrix

between φ and mk, Cφ,kz denotes the cross covariance matrix between φ and mkz and Ck,kz

denotes the cross covariance matrix between mk and mkz . We let Cs denote the Nw × Nw

model covariance matrix for the vector of well skin factors and let Crp denote the prior
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covariance matrix for relative permeability parameters. Our assumptions imply that Cs and

Crp are diagonal matrices. The prior model covariance matrix is given by the Nm × Nm

matrix

CM =


Cφ Cφ,k Cφ,kz O O

Cφ,k Ck Ck,kz O O

Cφ,kz Ck,kz Ckz O O

O O O Cs O

O O O O Crp

 , (2.4)

where the O’s denote null submatrices of the appropriate size. If porosity is uncorrelated

with horizontal and vertical permeability, then Cφ,k and Cφ,kz are null matrices. If horizontal

and vertical permeability are not correlated, then Ck,kz is also a null matrix.

The prior pdf for m is then given by

πp(m) = a exp
{
− 1

2
(m−mprior)

T C−1
M (m−mprior)

}
, (2.5)

where a is the normalizing constant. Note the model which has the highest probability based

on Eq. 2.5 is m = mprior, thus it is convenient to think of mprior as the best estimate of the

model based on static data.

2.1.2 The a Posteriori Probability Density Function

We wish to determine the conditional pdf for m given observed production data and/or time-

lapse seismic data. Here, we consider only three types of production data, wellbore pressure

(pwf ), producing water-oil ratio (WOR) and producing gas-oil ratio (GOR). The WOR and

GOR data are not actually measured directly but are constructed from rate measurements.

Nevertheless, we will refer to the values of WOR and GOR as measured or observed data.

The column vector dobs,w contains all observed WOR data that will be used as conditioning

data. The column vector dobs,g contains the set of GOR conditioning data and dobs,p contains

all conditioning pressure data. Throughout, the Nd dimensional column vector dobs includes

all data that will be used to condition the model m. This may include one type of data, e.g.,

only GOR data or multiple types of data, e.g., pressure, WOR and GOR data and time-lapse

seismic data. Although, we do not consider it here, dobs may even include hard data, e.g.,

observed porosities at wells.

Pressure measurements errors are modeled as independent identically distributed Gaus-

sian random variables with mean zero and the variance of the ith measurement error given

by σ2
p,i. Often, we assume the variances of all pressure measurement errors are equal. GOR

measurement errors are modeled as independent Gaussian random variables with mean zero
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and variance σ2
g,i where the subscript g, i refers to the ith GOR measurement error. Similarly,

measurement errors in the WOR ratio are assumed to be independent random variables with

mean zero with the variance of the ith WOR measurement error given by σw,i. Although we

refer to these errors as measurement errors, they must also account for modeling or process-

ing errors, for example, if the total phase production rates are measured at a central location

and then back allocated to individual wells. In the case of time-lapse seismic data, the co-

variance matrix for the “measurement errors” also include modeling/processing errors and

these errors may be correlated (Aannonsen et al., 2002). The necessity to have an estimate

of measurement errors is a significant problem when integrating data as the measurement

errors will determine the relative weights of different types of data in the objective function

that must be minimized to obtain a history match of dynamic data. Aannonsen et al. (2002)

used a moving average to estimate true data and then generated an estimate of measurement

error by subtracting the estimated true data from the observed data in order to construct an

estimate of the covariance of measurement errors for both production and seismic data. His

work indicates that this is a challenging problem and one worthy of further investigation.

In synthetic cases, WOR ratio measurement errors are often modeled by the procedure

introduced by Wu et al. (1999). In this model, the WOR measurement error depends on the

magnitude of the measurement. Specifically, the variance of a particular measurement error

is defined as

Var(eWOR) = WOR2
obsεo +

1

q2
o,obs

max
[
ε2
wq2

w,obs, σ2
w,min

]
, (2.6)

where eWOR denotes the error in the “measurement” of WOR constructed from the observed

oil and water rates, qo,obs and qw,obs. Here, εm denotes the relative measurement error for

the flow rate of phase m. For example, if the relative measurement error in the oil flow

rate is two per cent, then εo = 0.02. The term σw,min is used so that we do not prescribe

unrealistically small measurement errors for the WOR when the WOR is small. To use this

model, one must specify values of εw, εo, and σw,min.

The three diagonal matrices, CD,p, CD,w and CD,g, respectively, denote the covariance

matrices for pressure data measurement errors, WOR measurement errors and GOR mea-

surement errors, and CD,s denotes the covariance matrix for time-lapse seismic data.

If the total number of dynamic data to be history matched is Nd, i.e., the dimension of
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dobs is Nd, then the overall data covariance matrix is given by the following Nd×Nd matrix:

CD =


CD,p O O O

O CD,w O O

O O CD,g O

O O O CD,s

 . (2.7)

We of course do not need to use all types of data as conditioning data. For example, if we

wish to history match only GOR data, then dobs = dobs,g and CD = CD,g.

For a given model m, d denotes the predicted, true or calculated data corresponding to

dobs. If m is the true reservoir from which dobs was obtained and there are no measurement

errors, then d = dobs. As d depends on the model, we write

d = g(m), (2.8)

to represent the operation of calculating d given m. In our work, Eq. 2.8 represents the

operation of running the reservoir simulator to calculate d.

Bayes’ theorem (see Tarantola (1987)) implies that the a posteriori pdf for the model

m conditional to the observed data is proportional to the product of the prior pdf and the

likelihood function for the model, and is thus given by

f(m|dobs) = a exp{−O(m)}, (2.9)

where a is the normalizing constant and

O(m) =
1

2

[(
m−mprior

)T
C−1

M

(
m−mprior

)
+
(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

)]
. (2.10)

2.1.3 Construction of the MAP Estimate and Realizations

The maximum a posteriori (MAP) estimate is denoted by m∞ and is defined to be the

model that maximizes the pdf of Eq. 2.9, or equivalently minimizes the objective function of

Eq. 2.10. Although gradient based methods appear to be the only feasible way to construct

a minimum of O(m), there is no guarantee that Eq. 2.10 has a unique global minimum, or

that a gradient-based optimization procedure will converge to a global minimum. In fact,

if a gradient method is applied to minimize O(m), it is important to check the results to

ensure that the method did not converge to a local minimum which yields an unacceptable

match of production data, or unreasonable reservoir properties. Thus, we wish a MAP

estimate to satisfy two criteria (i) the geological features and distribution of rock properties

should be plausible when compared with the features encapsulated in the prior geostatistical
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model and (ii) the map estimate should predict dynamic data that is in good agreement with

the observed dynamic data that we are trying to history match. An indication of whether

we have obtained an acceptable match of observed conditioning data is provided by the

value of the objection function at the MAP estimate, m∞, obtained from the optimization

algorithm. Specifically, when the data is linearly related to m, it is shown in Tarantola (1987)

that the O(m∞) has a chi-squared distribution with expectation Nd/2 and variation Nd/2.

Assuming that a value of O(m∞) that differs more than five standard from its expected value

is unreasonable, we do not accept m∞ as a legitimate history-matched model unless

Nd

2
− 5

√
Nd

2
≤ O(m∞) ≤ Nd

2
+ 5

√
Nd

2
. (2.11)

or equivalently,

1− 5

√
2

Nd

≤ 2

Nd

O(m∞) ≤ 1 + 5

√
2

Nd

. (2.12)

Although this result can be rigourously established only when the relation of Eq. 2.8 is linear,

i.e.,

d = Gm, (2.13)

where G is an Nd × Nm matrix, computational results suggest we should be able to satisfy

Eq. 2.12 even when the relation between data and the model is nonlinear.

The MAP estimate effectively represents the mean of an approximation to the a posteriori

pdf based on a linearization about the MAP estimate. As such, the MAP estimate is normally

too smooth to provide a plausible reservoir model. Moreover, if one wishes to assess the

uncertainty in the model or in future reservoir performance predictions, it is desirable to

generate multiple realizations of the model. In order for these models to give an accurate

characterization of the uncertainty, they should represent a correct sample of the conditional

pdf of Eq. 2.9. The most common way to do this is to apply the method proposed by Oliver

et al. (1996) and Kitanidis (1995). In our work this method is referred to as the randomized

maximum likelihood method. To generate a realization with this procedure, we calculate an

unconditional realization muc from

muc = mprior + C
1/2
M zM , (2.14)

where zM is Nm-dimensional column vector of independent standard random normal deviates.

The matrix C
1/2
M is a square root of CM and is normally chosen as C

1/2
M = L where

CM = LLT , (2.15)
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is the Cholesky decomposition of CM . For large problems, generation of the Cholesky de-

composition is not feasible, and we apply sequential Gaussian co-simulation to generate an

unconditional realization of the model; see Gómez-Hernández and Journel (1992). Similarly

a realization of the data is generated from

duc = dobs + C
1/2
D zD, (2.16)

where zD is an Nd-dimensional column vector of standard random normal deviates. The

conditional realization of m is then obtained by minimizing

Or(m) =
1

2
(m−muc)

T C−1
M (m−muc) +

1

2
(d− duc)

T C−1
D (d− duc). (2.17)

Similar to the results which gave Eq. 2.11, it can be argued (Zhang et al., 2001a)) that O(m)

can be approximated as a chi-squared distribution with expectation given by E(O(m)) = Nd

and standard deviation given approximately by σ(O(m)) ≈
√

2Nd. Virtually all samples

should be within five standard deviations of the mean. Thus, if applying an optimization

algorithm to minimize Eq. 2.17 gives a result mc, we accept mc as a legitimate realization if

and only if

Nd − 5
√

2Nd ≤ O(mc) ≤ Nd + 5
√

2Nd. (2.18)

Eq. 2.18 has proved to be very reliable for single-phase flow history matching synthetic

problems, but for multiphase flow problems, for a long time, we encountered situations

where we were unable to decrease the objective function to a value consistent with Eq. 2.18.

In this report, we discuss damping, rescaling and constrained optimization procedures that

enable us to obtain conditional realization satisfying Eq. 2.18 using the LBFGS optimization

algorithm.

It is important to note that the goal of this project was to develop reliable computational

techniques for history matching large scale problems, not uncertainty analysis. Thus, in

most examples considered we do not generate multiple realizations. Instead, either the MAP

estimate or a single conditional realization is calculated using the randomized maximum

likelihood method.

2.1.4 Gauss-Newton and Levenberg-Marquardt Algorithms

The Gauss-Newton method with restricted step has often been used to minimize O(m); see

Chu et al. (1995a). However, if the initial guess for the model yields a very poor match of

the observed production data, a straightforward application of the method may converge

extremely slowly or may converge to a model which yields an unacceptable match of produc-

tion data; see Wu et al. (1999). Moreover the model obtained may exhibit undershooting
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and overshooting, e.g., unreasonably high or low values of rock properties. Wu et al. (1999)

overcame this problem by using an artificially high value for the variance of data measure-

ment errors at early iterations. For problems which are sufficiently small so that it feasible to

compute the sensitivity coefficient matrix, we can overcome this problem using the modified

Levenberg-Marquardt algorithm introduced for Bayesian estimation problems by Bi (1999).

For large scale problems, we extend the data damping procedure used in Wu et al. (1999)

together with rescaling to overcome overshooting and undershooting problems.

Here, we avoid this difficulty by using a form of the Levenberg-Marquardt algorithm

introduced by Bi (1999). This algorithm can be written in two different forms. The first

comes from a modification of the standard Gauss-Newton method and is given by[
(1 + λl)C

−1
M + GT

l C−1
D Gl

]−1

δml+1 = −
[
C−1

M (ml −mprior) + GT
l C−1

D (g(ml)− dobs)
]
, (2.19)

ml+1 = ml + αlδm
l+1 (2.20)

where αl = 1. Here l, as either a subscript or superscript, refers to the iteration index. The

matrix Gl denotes the Nd ×Nm sensitivity coefficient matrix evaluated at ml. The entry in

the ith row and jth column of Gl represents the sensitivity of the ith calculated data gi to

the jth model parameter evaluated at ml, i.e., this entry is ∂gi(m
l)/∂mj, where mj is the

jth entry of m. If O(ml+1) < O(ml), we set λl+1 = λl/10, and if the objective function does

not decrease, we increase the Levenberg-Marquardt parameter by a factor of 10. We start

with an initial value of λ = 10, 000. For the multiphase flow problems we have considered to

date, this simple procedure works well.

2.2 LM Versus Gauss-Newton

We consider two-dimensional flow problem where water is injected into an oil reservoir with

initial pressure above bubble point pressure. Water is injected via a well near the center

of the reservoir and four wells near the corners of the reservoir are produced at a constant

oil rate. All fluid and rock properties are assumed known except for the gridblock values of

absolute permeability. Observed data consist of eight values of wellbore pressure at each well

uniformly spaced in time with the first pressure measurements occurring at 30 days. We wish

to history match these pressure data to generate the MAP estimate of the log-permeability

field. The model consists of the gridblock values of ln(k) on a 21×21×1 reservoir simulation

grid. The grid is areally uniform, i.e., ∆x = ∆y. In the history matching procedure, the

covariance matrix CM was generated using an isotropic spherical variogram with a sill of 0.5

and a range equal to about 4∆x.

19



Reynolds & Oliver DE-FC26-00BC15309 December 15, 2004

0 2 4 6 8 10 12 14 16 18 20
0.1

1

10

100

1000

10000
No

rm
ali

ze
d O

bje
cti

ve
 F

un
cti

on

Iteration Number

 Gauss-Newton
 Levenberg-Marquardt

Figure 2.1: Behavior of the normalized objective function for Gauss-Newton and Levenberg-

Marquardt algorithms.

History matching was done by minimizing the objective function of Eq. 2.10 using the

modified Levenberg-Marquardt (MLM) algorithm of Eq. 2.18 and with the Gauss-Newton

method of obtained by setting λl = 0 for all l in Eq. 2.10. Fig. 2.2 shows the behavior of

the normalized objective function during the iterations of the two optimization algorithms.

Here the normalized objective function is defined by

ON(m) = 2
O(m)

Nd

, (2.21)

where the objective function O(m) is given by Eq. 2.10. Because Nd = 32, Eq. 2.12 indicates

that expected value of the normalized objective function evaluated at the MAP estimate

should be around unity and should satisfy

ON(m∞) ≤ 1 + 5

√
2

Nd

= 2.25. (2.22)

The results of Fig. 2.1 indicate that Eq. 2.22 is satisfied by the MAP estimate obtained with

the MLM algorithm but is not satisfied using the MAP estimate obtained with the Gauss-

Newton method even though more iterations were done with the Gauss-Newton algorithm.

Much more importantly, Fig. 2.2 shows that the MAP estimate of ln(k) obtained from the

Gauss-Newton method is rough in the sense that small values of ln(k) on the order of 3.0 or
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less occur in gridblocks close to gridblocks where ln(k) is 4.5 or greater. This roughness is a

consequence of ill-conditioning which tends to result in overly rough models at early iterations

when the Gauss-Newton method is used. Note the MAP estimate obtained with the MLM

algorithm is much smoother or more continuous (Fig 2.3) because the MLM iteration matrix

is better conditioned at early iterations and large changes in the model parameters are

damped. (In the MLM algorithm, the value of λl was decreased by a factor of 10 at each

iteration.) (Strictly speaking we should refer to the models obtained as estimates of the

MAP estimate as the estimated models are different and there is no assurance that either

permeability field is a global minimum of O(m). Nevertheless, we will simply refer to a model

obtained by applying an optimization algorithm to minimize Eq. 2.10 as a MAP estimate

instead of an estimate of a MAP estimate.)
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Figure 2.2: MAP estimate from Gauss-Newton method.
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Figure 2.3: MAP estimate from the modified Levenberg-Marquardt algorithm.

2.3 Calculation of Sensitivities with the Adjoint Method

It is not feasible to apply automatic history matching of production data unless one has an

efficient method for computing sensitivities that can be coupled with a multiphase reservoir

simulator. One key contribution of our work is the development and implementation of an

adjoint procedure that can be coupled with a fully implicit finite-difference simulator in order

to calculate sensitivities needed in gradient based optimization routines. The equations that

must be solved to compute sensitivity coefficients with the adjoint method are presented in

this section. The procedure given here is also used to compute the gradient of the objective

function if the LBFGS or nonlinear conjugate gradient optimization algorithms are used in

history matching.
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2.3.1 The Reservoir Simulator

The simulator used is based on a fully-implicit, finite-difference formulation of the three-

phase flow, black-oil equations expressed in a x–y–z coordinate system which apply on Ω;

see Eq. 2.1. Suppose there are Nx, Ny, Nz gridblocks in the x−, y− and z− directions

respectively. Let N be the total number of gridblocks, i.e., N = Nx × Ny × Nz. At each

of the N gridblocks, three basic finite-difference equations apply. These three equations

represent the mass balance for each of the three components, i.e., oil, gas and water. In

addition, a constraint is applied at each of the Nw wells to yield Nw additional equations.

At each well at each time step, either an individual phase flow rate, the total flow rate or

the wellbore pressure may be specified as a well constraint. In the results considered in this

work, capillary pressures are assumed to be negligible. The fully-implicit, black-oil simulator

(CLASS-Chevron’s Limited Applications Simulation System) used in this work was provided

by Chevron.

For gridblock i, the primary variables that are solved for are case dependent. Table 2.1

summarizes the different cases and the primary variables solved for in each case. In the

column entitled “Equations”, Sum denotes the total mass balance equation (i.e., the sum-

mation of the oil, gas and water equations); Oil represents the oil mass balance equation and

Gas represents the gas mass balance equation.

Phases Equations Unknowns Auxiliary equation

O-W-G
Sg > 0 Sum, Oil, Gas p, So, Sg Sw = 1− So − Sg; Rs from PVT table
Sg = 0 Sum, Oil, Gas p, So, Rs Sg = 0; Sw = 1− So − Sg

O-W Sum, Oil p, So Sw = 1− So

W-G Sum, Gas p, Sg Sw = 1− Sg

O-G
Sg > 0 Sum, Gas p, Sg So = 1− Sg; Rs from PVT table
Sg = 0 Sum, Gas p, Rs Sg = 0; So = 1− Sg

Table 2.1: Equations and unknowns solved for in the simulator.

At each time step, we can output p, So, Sg, Sw and Rs of each individual gridblock

from CLASS. From these primary variables, we can calculate all the derivatives required

for constructing the adjoint system based on the PVT table. In addition to the gridblock

variables, the flowing wellbore pressure, pwf,l at the lth well at a specified depth is also

a primary variable. We let yn denote a column vector which contains the set of primary

variables (pressures and saturations) at time step n. At gridblock i, the finite-difference
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equation for component u can be written as

fu,i(y
n+1, yn, m) = 0, (2.23)

for u = o, w, g and i = 1, . . . , N . The well constraints are represented by

fwf,l(y
n+1, yn, m) = 0, (2.24)

for l = 1, 2, . . . , Nw. For simplicity, we let

fn+1
u,i = fu,i(y

n+1, yn, m), (2.25)

and

fn+1
wf,l = fwf,l(y

n+1, yn, m), (2.26)

then Eqs. 2.23 and 2.24 can be rewritten as

fn+1
u,i = 0, (2.27)

and

fn+1
wf,l = 0, (2.28)

respectively. If the flowing wellbore pressure at well l at the datum depth at time tn+1 is

specified to be equal to pn+1
wf,l,0, then Eq. 2.25 is simplified to

fn+1
wf,l = pn+1

wf,l − pn+1
wf,l,0 = 0. (2.29)

In CLASS, the three equations for three-phase problem that are solved at gridblock i are

fn+1
1,i = fn+1

o,i + fn+1
w,i + fn+1

g,i = 0 (2.30)

fn+1
2,i = fn+1

o,i = 0 (2.31)

fn+1
3,i = fn+1

g,i = 0 (2.32)

where i = 1, 2, · · · , N . If the following three equations

fn+1
1,i = fo,i = 0 (2.33)

fn+1
2,i = fn+1

w,i = 0 (2.34)

fn+1
3,i = fn+1

g,i = 0 (2.35)

instead of Eqs. 2.30 through 2.32 are used to construct the Jacobian matrix, then we will

have trouble for some situations to do incomplete LU decomposition of the Jacobian matrix
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in order to use orthomin which is an iterative solver. From Table 2.1, we can see no matter

which case happens, the pressure is always one of the primary variables. Hence, in the

Jacobin matrix, the derivative of a certain equation at ith gridblock with respect to the

pressure at the ith gridblock is always the diagonal element. The location of this entry

depends on how you order the primary variables. If the pressure is ordered as the first

primary variable in each gridblock as people usually do, then in the Jacobian matrix, every

third diagonal entry will be df1,i/dpi where i is the gridblock index. If f1,i = fo,i, then

the derivative df1,i/dpi is zero whenever oil saturation So,i is zero. Because if this is the

case, then every individual term involved in df1,i/dpi is related to oil saturation by either

relative permeability or So itself and becomes zero. The subroutine we used to perform the

incomplete LU decomposition will perform the operation of dividing the row of Jacobian

matrix by the diagonal element. Therefore, if the situation presented above happens, e.g.,

in the gas cap area, then this subroutine will be terminated because of the illegal math

operation.

Eq. 2.28 and Eqs. 2.30 through 2.32 represent a system of Ne equations where

Ne = 3N + Nw. (2.36)

These Ne equations are solved to obtain the values of the primary variables at time tn+1 =

tn + ∆tn. For wells at which the flowing bottom-hole pressure is specified, phase flow rates

at each well are computed by Peaceman’s equation (Peaceman, 1983). The component flow

rates from the perforated layer k of well l (at gridblock (i, j, k)) at time step n + 1 can be

evaluated as

qn+1
o,i,j,k = WIi,j,k

(
kro

Boµo

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k), (2.37)

qn+1
w,i,j,k = WIi,j,k

(
krw

Bwµw

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k), (2.38)

and

qn+1
g,i,j,k = WIi,j,k

(
krg

Bgµg

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k) + Rn+1
so,i,j,kq

n+1
o,i,j,k

= WIi,j,k

(
krg

Bgµg

+ Rs
kro

Boµo

)n+1

i,j,k

(pn+1
i,j,k − pn+1

wf,l,k).

(2.39)

The rates qn+1
o,i,j,k and qn+1

w,i,j,k are in units of STB/Day, and qn+1
g,l,k has units of SCF/Day. Here,

layer k means the wellbore gridblock with z-direction gridblock index equal to k. The well

index term WIi,j,k is the geometry part of productivity index and it is defined by

WIi,j,k =
0.007084zk

√
kx,i,j,kky,i,j,k

ln(ro,l,k/rw,l,k) + sl,k

, (2.40)
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and ro,l,k is defined

ro,l,k =
0.280734xi

√
1 +

kx,i,j,k

ky,i,j,k

(
4yj

4xi

)2

1 +
√

kx,i,j,k/ky,i,j,k

. (2.41)

Here, rw,l,k is the wellbore radius of the well l at layer k and sl,k is the skin factor for well l

at layer k.

The complete system of equations can formally be written as

fn+1 = f(yn+1, yn, m) =



fn+1
1,1

fn+1
o,1

fn+1
g,1

fn+1
1,2

...

fn+1
g,N

fn+1
wf,1

...

fn+1
wf,Nw



= 0, (2.42)

where

m = [m1, m2, · · · , mNm ]T , (2.43)

and

yn+1 = [pn+1
1 , Sn+1

o,1 , xn+1
1 , pn+1

2 , · · · , pn+1
i , Sn+1

o,i , xn+1
i , · · · , xn+1

N , pn+1
wf,1, · · · , pn+1

wf,Nw
]T , (2.44)

where

xn+1
i =

Sn+1
g,i for Sg,i > 0

Rn+1
s,i for Sg,i = 0

(2.45)

Eq. 2.42 is solved by the Newton-Raphson method which can be written as

Jn+1,kδyn+1,k+1 = −fn+1,k (2.46)

yn+1,k+1 = yn+1,k + δyn+1,k+1, (2.47)

where k is the Newton-Raphson iteration index, n is the time step index and

Jn+1,k =
[
∇yn+1(fn+1)T

]T
yn+1,k

, (2.48)

is the Jacobian matrix evaluated at yn+1,k, which represents the kth approximation for yn+1.

The initial guess for yn+1 is chosen as the solution at the previous time step, i.e.,

yn+1,0 = yn. (2.49)
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2.3.2 Adjoint Equations

We define a general scalar function by

β = β(y1, ..., yL, m), (2.50)

where L corresponds to the last time step tL at which one wishes to compute sensitivity

coefficients. The objective is to compute the derivatives of β with respect to the model

parameters m. We obtain an adjoint functional J by adjoining Eq. 2.42 to the function β:

J = β +
L∑

n=0

(λn+1)T fn+1, (2.51)

where λn+1 is the vector of adjoint variables at time step n + 1, and is given by

λn+1 =
[
λn+1

1 , λn+1
2 , . . . , λn+1

Ne

]T
. (2.52)

Taking the total differential of Eq. 2.51, and doing some simple rearranging gives

dJ = dβ +
L∑

n=0

{
(λn+1)T [∇yn+1(fn+1)T ]T dyn+1 + [∇m(fn+1)T ]T dm

}
+

L∑
n=0

(λn+1)T [∇yn(fn+1)T ]T dyn

= dβ + BT +
L∑

n=1

{[(λn)T [∇yn(fn)T ]T

+ (λn+1)T [∇yn(fn+1)T ]T ]dyn + (λn)T [∇m(fn)T ]T dm},

(2.53)

where

BT = (λL+1)T
{
[∇yL+1(fL+1)T ]T dyL+1 + [∇m(fL+1)T ]T dm

}
+ (λ1)T

[
∇y0(f 1)T

]T
dy0. (2.54)

The total differential of β can be written as

dβ =
L∑

n=1

[∇ynβ]T dyn + [∇mβ]T dm. (2.55)

The initial conditions are fixed, so

dy0 = 0. (2.56)

Choosing

λL+1 = 0, (2.57)
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it follows that BT = 0. Using this result and Eq. 2.55 in Eq. 2.53 and rearranging the

resulting equation gives

dJ =
L∑

n=1

[{
(λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T

+ [∇ynβ]T
}
dyn
]

+
{

[∇mβ]T +
N∑

n=1

(λn)T [∇m(fn)T ]T
}

dm.

(2.58)

To obtain the adjoint system, the coefficients multiplying dyn in Eq. 2.58 are set equal to

zero; i.e., we require that the adjoint variables satisfy

(λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T + [∇ynβ]T = 0. (2.59)

Taking the transpose of Eq. 2.59, gives the adjoint system[
∇yn(fn)T

]
λn = −

[
∇yn(fn+1)T

]
λn+1 −∇ynβ. (2.60)

where

∇yn [fn]T =



∂fn
1,1

∂pn
1

∂fn
w,1

∂pn
1

· · · ∂fn
g,N

∂pn
1

∂fn
wf,1

∂pn
1

· · · ∂fn
wf,Nw

∂pn
1

∂fn
1,1

∂Sn
w,1

∂fn
w,1

∂Sn
w,1

· · · ∂fn
g,N

∂Sn
w,1

∂fn
wf,1

∂Sn
w,1

· · · ∂fn
wf,Nw

∂Sn
w,1

∂fn
1,1

∂Sn
g,1

∂fn
w,1

∂Sn
g,1

· · · ∂fn
g,N

∂Sn
g,N

∂fn
wf,1

∂Sn
g,1

· · · ∂fn
wf,Nw

∂Sn
g,1

∂fn
1,1

∂pn
2

∂fn
w,1

∂pn
2

· · · ∂fn
g,N

∂pn
2

∂fn
wf,1

∂pn
2

· · · ∂fn
wf,Nw

∂pn
2

...
... · · · ...

... · · · ...
∂fn

1,1

∂Sn
g,N

∂fn
w,1

∂Sn
g,N

· · · ∂fn
g,N

∂Sn
g,N

∂fn
wf,1

∂Sn
g,N

· · · ∂fn
wf,Nw

∂Sn
g,N

∂fn
1,1

∂pn
wf,1

∂fn
w,1

∂pn
wf,1

· · · ∂fn
g,N

∂pn
wf,1

∂fn
wf,1

∂pn
wf,1

· · · ∂fn
wf,Nw

∂pn
wf,1

...
... · · · ...

... · · · ...
∂fn

1,1

∂pn
wf,Nw

∂fn
w,1

∂pn
wf,Nw

· · · ∂fn
g,N

∂pn
wf,Nw

∂fn
wf,1

∂pn
wf,Nw

· · · ∂fn
wf,Nw

∂pn
wf,Nw



, (2.61)
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where f1,i is given by Eq. 2.30 and

∇yn [fn+1]T =



∂fn+1
1,1

∂pn
1

∂fn+1
w,1

∂pn
1

· · · ∂fn+1
g,N

∂pn
1

∂fn+1
wf,1

∂pn
1

· · · ∂fn+1
wf,Nw

∂pn
1

∂fn+1
1,1

∂Sn
w,1

∂fn+1
w,1

∂Sn
w,1

· · · ∂fn+1
g,N

∂Sn
w,1

∂fn+1
wf,1

∂Sn
w,1

· · · ∂fn+1
wf,Nw

∂Sn
w,1

∂fn+1
1,1

∂Sn
g,1

∂fn+1
w,1

∂Sn
g,1

· · · ∂fn+1
g,N

∂Sn
g,N

∂fn+1
wf,1

∂Sn
g,1

· · · ∂fn+1
wf,Nw

∂Sn
g,1

∂fn+1
1,1

∂pn
2

∂fn+1
w,1

∂pn
2

· · · ∂fn+1
g,N

∂pn
2

∂fn+1
wf,1

∂pn
2

· · · ∂fn+1
wf,Nw

∂pn
2

...
... · · · ...

... · · · ...
∂fn+1

1,1

∂Sn
g,N

∂fn+1
w,1

∂Sn
g,N

· · · ∂fn+1
g,N

∂Sn
g,N

∂fn+1
wf,1

∂Sn
g,N

· · · ∂fn+1
wf,Nw

∂Sn
g,N

∂fn+1
1,1

∂pn
wf,1

∂fn+1
w,1

∂pn
wf,1

· · · ∂fn+1
g,N

∂pn
wf,1

∂fn+1
wf,1

∂pn
wf,1

· · · ∂fn+1
wf,Nw

∂pn
wf,1

...
... · · · ...

... · · · ...
∂fn+1

1,1

∂pn
wf,Nw

∂fn+1
w,1

∂pn
wf,Nw

· · · ∂fn+1
g,N

∂pn
wf,Nw

∂fn+1
wf,1

∂pn
wf,Nw

· · · ∂fn+1
wf,Nw

∂pn
wf,Nw



, (2.62)

and

∇ynβ =

[
∂β

∂pn
1

,
∂β

∂Sn
w,1

,
∂β

∂Sn
g,1

,
∂β

∂pn
2

, · · · ,
∂β

∂Sn
g,N

,
∂β

∂pn
wf,1

, · · · ,
∂β

∂pn
wf,Nw

]T

. (2.63)

Note that when we set up the adjoint system, we use the water equation fw, instead of

the oil equation fo as in CLASS, as the second equation in order to use the previous code

developed by Ruijian Li without modifying it too much. Our results indicate that using fw

instead of fo as the second equation does not affect the accuracy of the adjoint solutions.

When we construct the adjoint system, the entries of the y vector are always p, So, Sg and

pwf , i.e.,

y = [p1, So,1, Sg,1, p2, · · · , pi, So,i, Sg,i, · · · , Sg,N , pwf,1, · · · , pwf,Nw ], (2.64)

whereas in the forward simulator, Eq. 2.43 is used. Our results indicate that this does not

affect the accuracy of the adjoint solutions.

Eq. 2.60 with initial condition 2.57 is solved backwards in time for n = L, L − 1, . . . , 1.

Note that the forward simulation equation is solved forward in time. Also note that the

coefficients in Eq. 2.60 are independent of the adjoint variable λ, which means that the

adjoint equation is linear. Therefore, solving the adjoint system is cheaper in terms of

the computation cost than solving the forward simulation equation which is nonlinear. In

the above equations, ∇yn(fn)T and ∇yn(fn+1)T are Ne × Ne matrices, and ∇ynβ is an Ne-

dimensional column vector.

The matrix given by Eq. 2.62 is a diagonal band matrix which is only related to the

accumulation terms in the reservoir simulation equations. Note that the coefficient matrix

(∇yn(fn)T ) (Eq. 2.61) in the adjoint system is simply the transpose of the Jacobian matrix
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of Eq. 2.48 evaluated at yn when the equations and primary variables used to construct

adjoint system are the same as used in the forward equations. As the adjoint system is

solved backwards in time, information needed in these matrices (Eqs. 2.61 and 2.62) must be

saved from the forward simulation run. In our code, we write all these primary variables to

disk to save memory. For details on these equations for computing the derivatives ∇yn(fn)T ,

∇yn(fn+1)T , and ∇ynβ in the adjoint equation, Eq. 2.60, see Li (2001).

As a summary, the adjoint system has the following properties:

(i) the adjoint system is solved backward in time;

(ii) the adjoint system is linear;

(iii) the coefficient matrix in the adjoint system is the transpose of the Jacobian matrix

used for solving the forward equations only if the adjoint system is fully consistent with

the forward equation, i.e., in each gridblock the same equations and primary variables

are used to construct the adjoint system and the flow equation system.

Considering J as a function of m , we can write its total differential as

dJ = (∇mJ)T dm. (2.65)

By comparing Eq. 2.58 and Eq. 2.65, it follows that the desired sensitivity coefficients for

J , or equivalently, β, are given by

∇mJ = ∇mβ +
L∑

n=1

[∇m(fn)T ](λn), (2.66)

where

∇m[fn]T =


∂fn

1,1

∂m1

∂fn
w,1

∂m1

∂fn
g,1

∂m1

∂fn
1,2

∂m1
· · · ∂fn

g,N

∂m1

∂fn
wf,1

∂m1
· · · ∂fn

wf,Nw

∂m1
∂fn

1,1

∂m2

∂fn
w,1

∂m2

∂fn
g,1

∂m2

∂fn
1,2

∂m2
· · · ∂fn

g,N

∂m2

∂fn
wf,1

∂m2
· · · ∂fn

wf,Nw

∂m2
...

...
...

...
...

...
...

...
...

∂fn
1,1

∂mNm

∂fn
w,1

∂mNm

∂fn
g,1

∂mNm

∂fn
1,2

∂mNm
· · · ∂fn

g,N

∂mNm

∂fn
wf,1

∂mNm
· · · ∂fn

wf,Nw

∂mNm

 , (2.67)

and

∇mβ =

[
∂β

∂m1

,
∂β

∂m2

, · · · ,
∂β

∂mNm

]T

. (2.68)

The matrix ∇m[fn]T is an Nm×Ne sparse matrix and ∇mβ is an Nm-dimensional column

vector. In Eq. 2.66, the gradient ∇mβ involves the partial derivatives of β with respect to the

30



Reynolds & Oliver DE-FC26-00BC15309 December 15, 2004

model parameters. If the jth model parameter does not explicitly appear in the expression

for β, then ∂β/∂mj = 0. For example, if β = pn
wf , then we set ∇mβ = 0 in Eq. 2.66.

To apply a conjugate gradient (Makhlouf et al., 1993) or variable metric method (Yang

and Watson, 1988), we need only compute the gradient of the objective function and this

can be done by setting β = O(m) in the adjoint procedure. In this case, one only needs

to solve the adjoint system Eq. 2.60 once and substitute the resulting adjoint solutions to

Eq. 2.66 to obtain the gradient.

To apply the adjoint method to calculate the sensitivity of the variable β to model param-

eters m, one needs to solve the adjoint system equation Eq. 2.60 to obtain the adjoint variable

λ, and then use Eq. 2.66 to calculate sensitivity coefficients. If we consider permeabilities

(kx, ky and kz) and porosities (φ) in each individual gridblock, i.e.,

mkx = kx = [ kx,1, kx,2, · · · , kx,N ]T , (2.69)

mky = ky = [ ky,1, ky,2, · · · , ky,N ]T , (2.70)

mkz = kz = [ kz,1, kz,2, · · · , kz,N ]T , (2.71)

and

mφ = φ = [ φ1, φ2, · · · , φN ]T , (2.72)

then from Eq. 2.66, the equations to calculate the derivatives with respect to kx, ky, kz and

φ are given by

∇kxJ = ∇kxβ +
L∑

n=1

[∇kx(f
n)T ](λn), (2.73)

∇kyJ = ∇kyβ +
L∑

n=1

[∇ky(f
n)T ](λn), (2.74)

∇kzJ = ∇kzβ +
L∑

n=1

[∇kz(f
n)T ](λn), (2.75)

and

∇φJ = ∇φβ +
L∑

n=1

[∇φ(f
n)T ](λn), (2.76)

where β is pwf , GOR, WOR at some specified time step L, the whole data mismatch part of

the objective function Od(m) or any other terms for which we wish to calculate sensitivities.

In order to calculate the gradient of the objective function, we consider β as the whole

data mismatch part of the objective function, i.e.,

β = Od(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs), (2.77)
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or in the case of stochastic simulation of m,

β = Od(m) =
1

2
(g(m)− duc)

T C−1
D (g(m)− duc). (2.78)

Thus, we have

∇ynβ = ∇yn{1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)}

=
[
∇yn(g(m)− dobs)

T
]
C−1

D (g(m)− dobs)

= ∇yn [g(m)]T C−1
D (g(m)− dobs).

(2.79)

In the case of β given by Eq. 2.78, the dobs in Eq. 2.79 should be replaced by duc. The matrix

∇yn [g(m)]T is an Ne ×Nd matrix and defined as

∇yn [g(m)]T =



∂g1

∂pn
1

∂g2

∂pn
1

· · · ∂gNd

∂pn
1

∂g1

∂Sn
w,1

∂g2

∂Sn
w,1

· · · ∂gNd

∂Sn
w,1

∂g1

∂Sn
g,1

∂g2

∂Sn
g,1

· · · ∂gNd

∂Sn
g,N

∂g1

∂pn
2

∂g2

∂pn
2

· · · ∂gNd

∂pn
2

...
... · · · ...

∂g1

∂Sn
g,N

∂g2

∂Sn
g,N

· · · ∂gNd

∂Sn
g,N

∂g1

∂pn
wf,1

∂g2

∂pn
wf,1

· · · ∂gNd

∂pn
wf,1

...
... · · · ...

∂g1

∂pn
wf,Nw

∂g2

∂pn
wf,Nw

· · · ∂gNd

∂pn
wf,Nw



. (2.80)

The entries of vector g(m) represent production data. The vector may contain entries like

pwf , GOR and WOR or any combination of these three kinds of production data. Details

for calculating each entry of matrix ∇yn [g(m)]T can be found in Li (2001). It turns out

many columns of this matrix are zero. Only the columns corresponding to data that are

measured at time n are nonzero. After we evaluate the matrix ∇yn [g(m)]T , we multiply

C−1
D (g(m)−dobs) by this matrix to obtain ∇ynβ. Once we have ∇ynβ, we can apply Eq. 2.60

to compute the adjoint variables.

To apply Eq. 2.66 to compute the derivatives, we need to evaluate ∇mβ first. The vector

∇mβ is given by

∇mβ = ∇mOd(m)

= ∇m

{1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

}
=
[
∇m(g(m)− dobs)

T
]
C−1

D (g(m)− dobs)

= ∇m[g(m)]T C−1
D (g(m)− dobs).

(2.81)
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In the case of β given by Eq. 2.78, the dobs in Eq. 2.81 should be replaced by duc. The matrix

∇m[g(m)]T is an Nm ×Nd matrix and defined as

∇m[g(m)]T =


∂g1

∂m1

∂g2

∂m1
· · · ∂gNd

∂m1

∂g1

∂m2

∂g2

∂m2
· · · ∂gNd

∂m2
...

... · · · ...
∂g1

∂mNm

∂g2

∂mNm
· · · ∂gNd

∂mNm

 . (2.82)

The vector g(m) is the calculated production data vector. For the history matching problems

considered here, an entry of g will correspond to pwf , GOR or WOR. The formulas for

calculation of elements in the matrix ∇m[g(m)]T when g represents production data are

straightforward and can be found in Li (2001). After we compute ∇mβ, we can use Eq. 2.66

to compute the derivatives of the objective function with respect to model parameters, i.e.,

the gradient of the objective function.

2.4 Results, Example History Match

For relatively small problems, it is appropriate to use the Modified Levenberg-Marquardt

(MLM) algorithm to history match production. In this section, we illustrate the validity

of the history matching procedure by considering a simple problem. In the next chapter

we consider algorithms (LBFGS and nonlinear conjugate gradient) which do not require

computation of all sensitivities and can thus be applied to history match large scale problems.

The synthetic example presented here is one of several that were used to verify that the

adjoint method gives sufficiently accurate sensitivity coefficients for use in the optimization

algorithms. This was verified by comparing sensitivities computed with the adjoint methods

with those computed with the finite-difference methods. (In some previous publications, the

finite-difference method was referred to as the direct method, see, for example, Chu and

Reynolds (1995) or He et al. (1997).) For all cases that we have considered, the adjoint

method and finite-difference method gave results that agreed to two significant digits. Thus

plots of the sensitivities obtained from the two methods are graphically indistinguishable

and we do not present results.

2.4.1 True Reservoir

The areal extent of the reservoir is 600 feet by 600 feet and contains two layers. Layer 1 refers

to the top layer and layer 2 refers to the bottom layer. The thickness of each layer is uniform
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and equal to 30 feet. An uniform 15 × 15 × 2 finite difference grid with ∆x = ∆y = 40 ft

and ∆z = 30 ft is used in all reservoir simulation runs.

Each layer of the true model consists of three permeability regions. Fig. 2.4 shows the

distribution of values of horizontal log-permeability in layers 1 and 2. (The white gridblocks

in Fig. 2.4(a) indicate gridblocks in which producing wells are completed.). For layer 1,

ln(k) = 5.2 (k = 181 md) in the lower left quadrant, ln(k) = 5.8 (k = 330 md) in the lower

right quadrant and ln(k) = 5.5 (k = 245 md) in the upper half. For layer 2, ln(k) = 3.7

(k = 40 md) in the lower left quadrant, ln(k) = 4.3 (k = 74 md) in the lower right quadrant

and ln(k) = 4.0 (k = 55 md) in the upper half. Fig. 2.4(b) shows the distribution of values of

horizontal log-permeability in layer 2. In this figure, the white gridblock shows the location

of a water injection well. Water is injected only into layer 2.

1 8 15

1

8

15

3.7 4.0 4.3 4.6 4.9 5.2 5.5 5.8

1

34

2

(a) Layer 1.

1 8 15

1

8

15

3.7 4.0 4.3 4.6 4.9 5.2 5.5 5.8

5

(b) Layer 2.

Figure 2.4: Horizontal log-permeability for true model and well completions.

In the truth case, vertical permeability is equal to one-tenth horizontal permeability in

the top layer and is equal to two-tenths of horizontal permeability in the bottom layer. Thus,

for layer 1, ln(kz) = 2.9 (kz = 18 md) in the lower left quadrant, ln(kz) = 3.5 (kz = 33 md)

in the lower right quadrant and ln(kz) = 3.2 (kz = 24.5 md) in the upper half. For layer

2, ln(kz) = 2.1 (kz = 8 md) in the lower left quadrant, ln(kz) = 2.7 (kz = 15 md) in the

lower right quadrant and ln(kz) = 2.4 (kz = 11) in the upper half. Figs. 2.5(a) and 2.5(b),
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(b) Layer 2.

Figure 2.5: Vertical log-permeability for true model.

respectively, show the distribution of values of vertical log-permeability in layers 1 and 2.

In this example, reservoir porosity is assumed to be uniform with φ = 0.22. Even though

the truth case consists of zones, permeabilities of each grid cell are estimated. The simplicity

of the example chosen allows one to easily visualize the quality of estimates. Some of the

pertinent information is summarized in Table 2.2 where the first row gives the zone and

the layer number. Throughout, Zone 1 refers to the upper half of the system depicted in

Figs. 2.4 and 2.5, Zone 2 refers to the lower right quadrant and Zone 3 refers to the lower

left quadrant. Var ln(k) denotes the variance and E[ln(k)] denotes its mean used to generate

the prior model.

Capillary effects are not included. Initial reservoir pressure at the depth corresponding

to the center of the top layer is specified as pi = 4500 psi. Initial bubble point pressure is

set equal to 4515 psi. Initial water saturation is equal to irreducible water saturation which

is equal to 0.2. Initial oil saturation is So,i = 0.8. As mentioned previously, Stone’s second

model is used to calculate the relative permeability to oil from the two sets of two-phase

relative permeability curves. For the two-phase oil-water system, residual oil saturation is

0.2. For the two-phase gas-oil system, residual oil saturation is 0.3 and critical gas saturation

is equal to 0.05.
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The reservoir contains four producing wells which are completed only in the top layer. The

white gridblocks in Fig. 2.4 show the location of the gridblocks that contain well completions.

Four producing wells, referred to as Wells 1 through 4, are located near the four corners of the

reservoir. Well 1 is completed in gridblock (3, 3, 1), well 2 is completed is gridblock (13, 3, 1),

well 3 is completed in gridblock (13, 13, 1) and well 4 is completed in gridblock (3, 13, 1).

Each of the wells is produced at total flow rate of 350 RB/D. A single water injection well

(well 5) completed in gridblock (8, 8, 2) is used to inject water into the bottom layer at a

rate of 1100 STB/D. At initial reservoir pressure, this is equivalent to an injection rate of

1107 RB/D. Note that the injection well (well 5) is located in the lower right quadrant of

the bottom layer, which corresponds to the highest permeability zone (ln(k) = 4.3) of the

bottom layer. The true skin factors at wells 1 through 5, respectively, are specified as 3.0,

4.0, 5.0, 2.0 and 0.0. By running the simulator using data from the truth case as input,

we obtained synthetic pressure, GOR and WOR data at the producing wells and synthetic

wellbore pressure data at the injection well.

For the example considered, wells produce from only one gridblock so the water-oil ratio

and gas-oil ratio, respectively, are given by

WOR =
krwµoBo

kroµwBw

, (2.83)

and

GOR = Rs +
krgµoBo

kroµgBg

. (2.84)

These equations are applied at each producing well and are evaluated using the pressure and

saturations of the gridblock containing the well.

Zone/layer 1/1 2/1 3/1 1/2 2/2 3/2

true ln(k) 5.5 5.8 5.2 4.0 4.3 3.7

true k, md 245 330 181 55 74 40

true ln(kz) 5.5 5.8 5.2 4.0 4.3 3.7

true kz, md 24.5 33 18 11 15 8

Var [ln(k)] 0.5 0.5 0.5 0.5 0.5 0.5

E[ln(k)] 5.5 5.5 5.5 4.0 4.0 4.0

Var [kz] , md 0.5 0.5 0.5 0.5 0.5 0.5

E[ln(kz)] 3.2 3.2 3.2 2.4 2.4 2.4

Table 2.2: True log-permeabilities and statistical parameters for example problem.
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(b) MAP, layer 1.

Figure 2.6: MAP estimate conditioned to pwf , WOR and GOR data versus true horizontal

log-permeability, layer 1.

At each producing well, we selected 10 WOR data, 10 GOR data and 10 pressure data

to use as conditioning data. At the injection well, we selected 10 pressure data to use as

conditioning data. The data are uniformly distributed throughout the 300 days time period

with the earliest time conditioning data corresponding to t = 30 days. We assumed pressure

measurement errors to be independent, identically-distributed, normal random variables with

mean zero and variance equal to 1 psi2. GOR measurement errors were modeled similarly

except the variance was set equal to 100 (scf/STB)2. The variances of WOR measurement

errors were specified by Eq. 2.6 with σw,min = 2.0 STB/STB, εo = 0.01 and εw = 0.02.

For the top layer, the prior means for ln(k) and ln(kz), respectively, were specified as 5.5

and 3.2 with the variances of both random variable equal to 0.5. For the second layer, the

prior means for ln(k) and ln(kz), respectively, were specified as 4.0 and 2.4 with the variances

of both random variable equal to 0.5. This information as well as permeability values for

the true model was presented previously in Table 2.2.

The same semivariogram was used for each of the four log-permeability fields. The

semivariogram is an isotropic spherical semivariogram with range equal to 160 ft and sill

equal to 0.5. As the areal dimensions of simulation gridblocks are ∆x = ∆y = 40 feet, if
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Figure 2.7: MAP estimate conditioned to pwf , WOR and GOR data versus true horizontal

log-permeability, layer 2.

the distance between the centers of two gridblocks at the same elevation is greater than or

equal to 4∆x, the two gridblock permeabilities are uncorrelated. There is no correlation

between layer 1 permeabilities and layer 2 permeabilities. In each layer, the correlation

coefficient between ln(k) and ln(kz) is set equal to 0.7. Each well skin factor is modeled as

an independent random variable with mean equal to 2.0 and variance equal to 25.

2.4.2 The MAP Estimate

As discussed previously, the MAP estimate was generated using the Levenberg-Marquardt

algorithm to minimize the objective function of Eq. 2.10. The vector of prior means was used

as the initial guess. Note even though each layer actually consists of three zones, horizontal

and vertical log-permeability are estimated at each gridblock. This simple model is used

only because it makes it easy to visualize the quality of the estimate. We consider results

obtained by history matching all data, pressure, WOR and GOR.

The right plot in Fig. 2.6 shows the MAP estimate of layer 1 horizontal log-permeability

field obtained by history-matching and the left plot shows the true horizontal log-permeability
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Figure 2.8: MAP estimate conditioned to pwf , WOR and GOR data versus true vertical

log-permeability, layer 1.

field. As the true field is discontinuous across the boundary between zones but the prior

model assumes a correlation length of about 4 gridblocks, the history matched model which

attempts to honor both the assumed prior and the production data is expected to be some-

what smoother across boundaries between zones than the true horizontal log-permeability

field. Despite the inconsistency between the prior geostatistical model and the truth, the his-

tory matched model for ln(k) agrees remarkably well with the true horizontal log-permeability

field. Fig. 2.7 shows similarly good agreement between the truth and the MAP estimate for

the layer 2 log-permeability field. As shown in Figs. 2.8 and 2.9, we get slightly poorer

agreement between the true and history-matched vertical log-permeability fields. As pro-

duction data generated with the simulator depends only on the harmonic averaged vertical

permeabilities at the boundary between layers 1 and 2 and not at individual layer vertical

permeabilities, in truth, production data can only resolve these harmonic averages. How-

ever, as the prior model incorporates the prior mean, the tendency of the history matching

procedure is to generate MAP estimates that are as close as possible to the prior means but

still yield a history match. Because of this, MAP estimate of vertical log-permeability is a

reasonable approximation to the true vertical log-permeability field.
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Figure 2.9: MAP estimate conditioned to pwf , WOR and GOR data versus true vertical

log-permeability, layer 2.
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Figure 2.10: History match of WOR data at the producers.

Estimates of well skin factors obtained by matching various combinations of production

data are shown in Table 2.3. Note the best estimates are obtained by history matching
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Figure 2.11: History match of GOR data at a producer.

pressure, WOR and GOR data, as was done to obtain the MAP estimates of log-permeability

fields shown in Figs. 2.6(b), 2.7(b), 2.8(b) and 2.9(b).

Well No. 1 2 3 4 5

True skin factors 3.00 4.00 5.00 2.00 0.00

Initial guess 2.00 2.00 2.00 2.00 2.00

pwf 2.60 3.30 2.97 2.61 -0.19

pwf+WOR 2.67 3.39 3.18 2.22 0.24

pwf+GOR 2.73 3.39 3.54 2.07 0.00

pwf+GOR+WOR 2.83 3.65 4.37 1.96 -0.27

Table 2.3: The true and estimated skin factors.

The history match of the observed WOR data at two of the producing wells (Wells 3 and

4) is shown in Fig. 2.10. Here the solid triangular points denote observed data for well 3 and

the solid curve that closely matches these data represents the WOR predicted with the MAP

estimate of the permeability, Figs. 2.6 through 2.9. The solid circular data points and the

dashed curve depict corresponding results for well 4. (Note we have WOR data during the

period when the water-oil ratio is equal to zero.) The solid curve through asterisks represents

the WOR predicted for all wells based on the initial guess for the permeability fields. In

the initial guess, each layer is homogenous with all gridblock permeabilities set equal to the
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appropriate prior mean so the initial guess gives the same WOR at all producers.

Solid circular and triangular data points represent the observed data used as conditioning

data. Curves through the cross data points indicate the data predicted from the initial guess

(mprior) of the model parameters. (Some initial pressure mismatches exceeded 400 psi.) The

predicted data shown is based on the model obtained by simultaneously matching pressure,

WOR and GOR data. Matches of similar quality were obtained for all wells for all pressure,

WOR and GOR observed data.
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Chapter 3

RESULTS: ESTIMATION OF

RELATIVE PERMEABILITY

CURVES

3.1 Generation of Estimates

For the synthetic examples presented here, the reservoir is assumed to be a rectangular par-

allelepiped and the permeability field is assumed to be isotropic. The forward model used

to calculate production data is a fully-implicit finite-difference simulator based on a block

centered grid. Additional information on the simulator can be found in Li et al. (2001a).

The model parameters to be estimated include the gridblock log-permeabilities and the pa-

rameters involved in the power law expressions for the relative permeability curves. All other

rock and fluid properties are assumed to be known. Log-permeabilities, instead of absolute

permeabilities, are used as parameters because it is assumed that absolute permeability is

log-normal.

Throughout, m denotes the vector of model parameters (gridblock log-permeabilities and

parameters defining relative permeability curves). In the Bayesian approach used here, m

is considered to be random vector. We assume that m has a prior multivariate Gaussian

distribution with covariance matrix CM and prior mean mprior. It is assumed that the model

parameters defining the relative permeability functions are not correlated with each other or

with the gridblock log-permeabilities. In practice, the prior means and covariance function

for log-permeability will be obtained from a geostatistical model constructed from static

data, e.g. well log, core and seismic data but not production data. The prior covariance
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matrix and prior means for relative permeability parameters could be constructed from lab-

oratory measurements of relative permeability curves, from lab data for analogue reservoirs,

or relative permeability correlations.

As discussed in Chapter 2, the maximum a posteriori estimate of model parameters can

be obtained by minimizing the following objective function, Tarantola (1987); Wu et al.

(1999); Li et al. (2001a)

O(m) =
1

2

[(
m−mprior

)T
C−1

M

(
m−mprior

)
+
(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

)]
. (3.1)

In the examples, considered here, the modified Levenberg-Marquardt algorithm originally

presented in Bi (1999) is applied to minimize O(m) with the Li et al. (2001b) implementation

of the adjoint method used to calculate sensitivity coefficients.

3.2 Relative Permeability Models

Throughout, Swc denotes irreducible water saturation, Sgc denotes critical gas saturation,

Sorg denotes the residual oil saturation for a two-phase, gas-oil system and Sorw denotes

residual oil saturation for a two-phase, water-oil system. As is common, we define oil relative

permeability under three-phase flow conditions as a combination of the two sets of two-phase

relative permeability functions. In the simulator, and hence in the examples presented, the

historically popular Stone’s (Stone, 1973) Model II is applied. The form of this model applied

here is the modification that is described in Aziz and Settari (1979). Our results, however,

indicate this model has a peculiar characteristic that is troublesome.

As the examples presented are synthetic, simple analytical formulas are used for the

relative permeability functions. Letting

Sw,max = 1− Sorw, (3.2)

the water relative permeability function is given by

krw =


0 if Sw ≤ Swc,

krwcw

(
Sw−Swc

1−Sorw−Swc

)nrw

if Swc ≤ Sw ≤ Sw,max

krwcw if Sw ≥ Sw,max.

(3.3)

The endpoint relative permeability, krwcw, represents the maximum value of water relative

permeability that can be obtained. The corresponding oil relative permeability function for
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a two-phase oil-water system is given by

krow =


krocw if Sw ≤ Swc,

krocw

(
1−Sorw−Sw

1−Sorw−Swc

)nrow

if Swc ≤ Sw ≤ Sw,max

0 if Sw ≥ Sw,max.

(3.4)

We let krog denote the oil relative permeability for a two-phase flow oil-gas system. In

the Stone Model II, it is assumed that the two-phase oil-gas relative permeabilities depend

only on gas saturation and are measured in the presence of irreducible water saturation.

Thus the endpoint values of oil relative permeability for a two-phase oil-water system and a

two-phase oil-gas system are identical, i.e.,

krog(Sg = 0) = krow(Sw = Swc) = krocw. (3.5)

The gas relative permeability function used in this work is given by

krg =


0 if Sg ≤ Sgc,

krgcw

(
Sg−Sgc

1−Sorg−Swc−Sgc

)nrg

if Sgc ≤ Sg ≤ Sg,max

krgcw if Sg ≥ Sg,max,

(3.6)

where

Sg,max = 1− Sorg − Swc. (3.7)

Note krgcw denotes the maximum value of gas relative permeability and occurs when Sw = Swc

and So = Sorg. The oil relative permeability function for a two-phase oil-gas system is given

by

krog =


krocw if Sg ≤ Sgc,

krocw

(
1−Sorg−Swc−Sg

1−Sorg−Swc−Sgc

)nrog

if Sgc ≤ Sg ≤ Sg,max

0 if Sg ≥ Sg,max.

(3.8)

Equations 3.6 and 3.8 indicate that oil and gas relative permeabilities are a function of only Sg

for a two-phase oil-gas system, whereas, the two-phase oil and water relative permeabilities

depend only on water saturation.

The water and gas relative permeabilities of Eqs. 3.3 and 3.6 apply regardless of the

number of phases present. If all three phases are mobile, the oil relative permeability function

is given by

kro = krocw

([ krow

krocw

+ krw

][ krog

krocw

+ krg

]
−
[
krw + krg

])
. (3.9)
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Equation 3.9 represents the modification of Stone’s Model II as presented in Aziz and Settari

(1979). This equation gives oil relative permeability as a function of Sw and Sg and applies

for any values of saturations, subject to the proviso that kro is set equal to zero whenever the

formula predicts a negative value. If Sg = 0, it is easy to show that Eq. 3.9 reduces to the

oil relative permeability function of the two-phase oil-water system and if Sw = Swc, then

Eq. 3.9 reduces to the oil relative permeability function for the two-phase oil-gas system.

We also assume residual oil saturations, critical gas saturation and irreducible water

saturation are known. Thus, in the general three-phase flow case, estimation of relative

permeability curves requires estimation of the components of the vector

mrel =
[
krwcw, krocw, nrw, nrow, krgcw, nrg, nrog

]T
. (3.10)

In general the components of the model m include gridblock log-pemeabilities and the com-

ponents of mrel. If absolute permeability is assumed to be known, then m = mrel.

3.3 Comments on Estimation of Relative Permeabili-

ties

The standard black-oil equations for three-phase flow involve only the product of absolute and

relative permeability, i.e., kkrm for m = o, w, g. Suppose we are given the true permeability

field and true relative permeabilities as one plausible set of model parameters which match

production data. If we generate a second set of model parameters by multiplying the absolute

permeability field by any positive constant a and dividing the true relative permeabilities

by a, then effective permeabilities as functions of saturations for the resulting set of model

parameters will be identical to the true model. Moreover, the two models will predict

identical production data when input into a reservoir simulator. Thus, it is clear that there

is an infinite set of model parameters that will result in the same predictions of reservoir

performance. In terms of the inverse problem of interest here, this means that we can

not expect to generate accurate estimates of absolute and relative permeability by history

matching observed production data. Any such estimate will have an infinite uncertainty

attached to them unless the uncertainty is constrained by a prior model or by imposing a

constraints on the permissible values of absolute permeability and relative permeabilities.

For the two sets of two-phase relative permeability curves, the effective permeabilities as

functions of saturations do not change as long as kkrocw, kkrgcw and kkrwcw are held constant.

Thus, under two-phase flow conditions, production data will not allow one to construct a

reliable estimate of k and the endpoint relative permeabilities. Quite interestingly, the
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modified Stone’s Model II three-phase oil relative permeability function has the strange

characteristic that it is not possible to keep all three effective permeabilities constant if k is

varied. To see this, we multiply Eq. 3.9 by absolute permeability and rearrange the resulting

equation to obtain

kkro = kkrocw

([ kkrow

kkrocw

+
kkrw

k

][ kkrog

kkrocw

+
kkrg

k

]
−
[kkrw

k
+

kkrg

k

])
. (3.11)

If kkrocw, kkrwcw and kkrgcw are held constant as k is varied, then all two-phase effective

permeability functions remain unchanged, but Eq. 3.11 indicates that the three phase effec-

tive oil permeability function kkro varies with k. Thus, changes in the absolute permeability

field will result in changes in predicted production data if three phases are mobile. Also

note that if kkrocw is held constant as k is varied, then both two phase flow effective oil

permeabilities, kkrow and kkrog will be unchanged, but the three-phase flow effective per-

meability function kkro will change unless effective gas and/or effective water permeability

are altered. Thus, under three-phase flow conditioned it is not possible to alter absolute

permeability while keeping all effective permeabilities constant. This means that changes

in absolute permeability will result in changes in predicted reservoir performance. Thus,

unlike the two-phase flow case, it may be possible to obtain reasonable estimates of both

absolute permeability and relative permeability functions from three-phase flow production

data. This result, however, is simply a peculiarity of Stone’s Model II. For example, if one

used the Dietrich and Bonder (1976) modification of Stone’s model, then it is possible to

obtain identical effective permeabilities under three-phase flow conditions for two different

absolute permeability fields. The Dietrich-Bonder model, however, has other disadvantages;

see Aziz and Settari (1979).

3.4 History Matching Examples

We consider two synthetic, two-dimensional three-phase flow problems. In the first example,

the reservoir consists of three zones of uniform absolute permeability. In this case, we con-

sider the estimation of relative permeability model parameters when absolute permeability is

known and then consider the simultaneous estimation of absolute and relative permeabilities.

In the second example, the true permeability field is an unconditional realization generated

from a prior geostatistical model. In this case we generate a realization, rather than an esti-

mate, of absolute and relative permeabilities. The information given in the following three

paragraphs applies to all examples presented.
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The reservoir simulation grid is 15 × 15 × 1. The grid is uniform with areal dimensions

given by ∆x = ∆y = 12.2 m (40 ft) and ∆z = 9.1 m (30 ft). Throughout, gridblock (i, j)

refers to the gridblock centered at (xi, yj, z1). A water injection well (referred to as Well 5) is

completed in gridblock (8, 8). Water is injected through this well at a constant rate of 87.4

std m3/d (550 STB/D) for all times. Producing wells are located in gridblocks (3, 3) (Well

1), (13, 3) (Well 2), (13, 13) (Well 3) and (3, 13) (Well 4). Each of these wells is produced at

a constant total fluid rate of 34.98 m3/d (220 RB/D). The synthetic production data used

to generate estimates is generated by running the reservoir simulator with the true model.

Observed production data corresponds to the pressure, water-oil ratio and producing gas-oil

ratio output from the simulator at thirty days intervals, i.e., at t = 30, 60, . . . , 300 days at

each producing well. At the water injection well, the flowing wellbore pressure at these times

is also recorded. Thus, 130 data points are available for estimating the model parameters

by automatic history matching. In the examples, we consider the effect of using only one

type of data. Initial reservoir pressure is 31, 026 kPa (4500 psi) and initial bubble-point

pressure is 30, 454 kPa (4417 psi) so pressure in gridblocks containing producing wells drop

below bubble-point pressure very shortly after the beginning of production. For all examples

considered water breaks through at all the producing wells prior to the end of the 300 day

production period. After water breaks through at a well, all three phases are mobile in the

well’s gridblock.

Throughout, the natural logarithm of absolute permeability is simply referred to as log-

permeability and denoted by ln(k). To generate the prior model, we assumed that log-

permeability is a stationary Gaussian random function with the associated covariance func-

tion defined from an isotropic spherical variogram (Journel and Huijbregts, 1978). The range

of the variogram is equal to 73.2 m (240 feet) and its sill is equal to 0.5. Thus the corre-

lation range of ln(k) is 73.2 m and the variance is 0.5. In all examples, the prior mean for

ln(k) is set equal to 4.0, so all elements of the vector mprior (see Eq. 2.2) which correspond

to gridblock log-permeabilities are set equal to 4.0. Relative permeabilities are represented

by power law expressions. In all cases Swc = 0.2, Sgc = 0.05, Sorg = 0.1 and Sorw = 0.2.

Throughout, porosity is assumed to be homogeneous with φ = 0.22.

For the examples considered here, the variance of the pressure measurement error is set

equal to 47.5 kPa2 ( 1 psi2), the variance of the GOR measurement error is set equal to

0.79 (std m3)/(std m3) (25 (scf/STB)2). The WOR measurement error is defined by Eq. 2.6

with εo = 0.01, εw = 0.02 and σw,min = 0.32 std m3/d. These values were used to construct

the data covariance matrix CD. In the examples presented, however, no noise was added

to the data generated from the simulation runs, that is dobs was set equal to the vector of
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production data output from the simulator.

3.4.1 Example 1a

In this case, the true reservoir model is not generated from an unconditional realization of the

prior model, but is prescribed as a three zone reservoir as shown in Fig. 3.1. In all gridblocks

contained within the lower left zone, ln(k) = 3.7, at all gridblocks in the lower right zone,

ln(k) = 4.3, and in all gridblocks in the upper half, ln(k) = 3.9. The prior variances and

prior means for the parameters which characterize the power law relative permeability curves

are defined in Table 3.1.

True Mean Var

nrw 1.90 2.17 1.0

krwcw 0.40 0.58 0.04

nrg 2.40 2.14 1.0

krgcw 0.90 0.49 0.04

nrow 2.60 2.05 1.0

nrog 1.70 1.74 1.0

krocw 0.80 0.49 0.04

Table 3.1: Prior means and variances of relative permeability model parameters.

First we consider the case where the true log-permeability field is fixed at its true value

and attempt only to estimate the model parameters defining the power law relative per-

meability curves. We consider the three cases where we construct the estimate of model

parameters by history matching only one type of data (pressure, gas-oil-ratio, or water-oil

ratio) and the case where we history match all 130 data to construct the estimate. The

results of these four history matches are summarized in Table 3.2. In this and similar tables

presented later, a column labeled true contains the true values of the parameters, a column

labeled pwf contains estimates of parameters obtained by history matching only pressure

data, a column labeled GOR contains estimates of parameters obtained by history matching

only producing gas-oil ratio data, a column labeled WOR contains estimates obtained by

history matching only water-oil ratio data, and a column labeled “All” contains estimates

obtained by history matching all observed data, pressure, GOR and WOR.
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Figure 3.1: Three-zone reservoir, true model; Examples 1a and 1b.
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Figure 3.2: Prior, true and estimated gas-oil relative permeabilities, ln(k)

known; Ex. 1a.
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True pwf GOR WOR All

nrw 1.90 1.91 1.91 1.95 1.90

krwcw 0.40 0.40 0.39 0.34 0.40

nrg 2.40 2.38 2.40 2.32 2.40

krgcw 0.90 0.86 0.87 0.54 0.90

nrow 2.60 2.61 2.61 2.66 2.60

nrog 1.70 1.69 1.73 1.75 1.70

krocw 0.80 0.80 0.79 0.68 0.80

Table 3.2: True and estimated relative permeability parameters; absolute permeability

known.

The results of Table 3.2 indicate that the estimates of the relative permeability parameters

are in extremely close agreement with the true values when we history match all available

data, only pressure data, or only GOR data. The estimates obtained by history matching

only the WOR data are significantly less accurate. Fig. 3.2 shows the estimated two-phase

gas and oil relative curves obtained by history matching only pressure data compared with

the true relative permeability curves and the initial guesses for the relative permeability

curves. In this and similar figures, the true relative permeability curves are shown as solid

curves with no data points on them and the initial guesses for relative permeability curves

used in the automatic history matching procedure are shown as curves through triangular

data points. The estimated relative permeability curves are always represented in our results

as open circular data points and open square data points. We did not draw the complete

relative permeability curves through these open data points as it makes the figures too

cluttered. The initial guesses for relative permeability curves are generated using the prior

values of mr, the model parameters that characterize the relative permeability curves. Note

the initial guesses for relative permeability curves are far from the truth. As can be deduced

from the results of Table 3.2, the relative permeability curves estimated by history matching

only GOR data are also very close to the true case. Factors that contribute to the excellent

estimates obtained for this example include the following: (i) the observed and predicted

data are generated from the same simulator with identical spatial grids and time steps, so no

modeling error (Tarantola, 1987) occurs; (ii) the observed production data that are history

matched are not corrupted by measurement error, i.e. the observed production data are

identical to data obtained from the simulator run based on the true model; (iii) all rock

and fluid properties except relative permeability parameters are known, so only the seven

relative permeability model parameters are adjusted during the matching process (fewer
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model parameters tend to yield less uncertain estimates); (iv) the saturation ranges that

occur during the 300 day time frame spanned by the production data vary significantly; gas

saturation varies from 0.0 to almost 0.25 at producing well gridblocks and water saturation

varies from about 0.2 to over 0.5 at producing well gridblocks and increases up to 0.8 at

the injection well gridblock. Thus, production data is influenced by the values of relative

permeabilities over large saturation ranges.

The results of Table 3.2 indicate that history matching either wellbore pressure data or

producing GOR data yields good estimates of the parameters krwcw and nrw which define

the water relative permeability function. As pressure data at producing wells are quite

sensitive to changes in total mobility (Thompson and Reynolds, 1997), it is not completely

surprising that one can obtain reasonable estimates of water relative permeability model

parameters even if we history match only pressure data corresponding to times prior to water

breakthrough. It is not clear why the information content of the GOR data is sufficient to

resolve the parameters defining the oil and water relative permeability curves for the two-

phase water-oil system. But, as shown next, an improved understanding of these results can

be obtained by considering dimensionless sensitivity coefficients.

As discussed in Zhang et al. (2002), dimensionless sensitivity coefficients provide a relative

measure of how different data affect estimates of model parameters, and the uncertainty in

these estimates. Here, the dimensional sensitivity of data di to model parameter mj is given

by

si,j =
∂di

∂mj

σmj

σdi

, (3.12)

where σ2
mj

denotes the prior variance for model parameter mj and σ2
di

denotes the variance

of the measurement error for the ith observed data. In essence, data corresponding to

higher values of dimensionless sensitivity are expected to result in better estimates of model

parameters, i.e., if si,j > sk,j, then history matching data dobs,i is expected to give a better

estimate of model parameter mj than is obtained by history matching data dobs,j; see Zhang

et al. (2002) for additional discussion.

Fig. 3.3 shows the dimensionless sensitivity of the flowing bottom hole pressure at well

1 to the seven parameters defining the two sets of relative permeability curves as a function

of time, and Fig. 3.4 presents a similar plot for the GOR dimensionless sensitivity coeffi-

cients. The results of Fig. 3.3 show that pressure is slightly sensitive to the water relative

permeability parameters (nrw, krwcw), even at times prior to breakthrough which occurs at

about 200 days. In fact up to 180 days, the dimensionless sensitivity of pressure to krwcw is

roughly equal to the dimensionless sensitivity of pressure to the corresponding gas relative

permeability parameter, krgcw. On the other hand, the results of Fig. 3.4 indicates that prior
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Figure 3.3: Dimensionless sensitivity of well 1 pressure to relative permeability model pa-

rameters; three-zone reservoir.
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Figure 3.4: Dimensionless sensitivity of well 1 GOR to relative permeability model parame-

ters; three-zone reservoir.
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to 180 days, the GOR is almost insensitive to the water relative permeability parameters,

but becomes very sensitive to these parameters after breakthrough. This indicates that the

GOR data obtained after water breakthrough is primarily responsible for the good estimate

of the water relative permeability curve (see Table 3.2) obtained by history matching GOR

data.

To check the preceding supposition, we repeated the history match using only data up

to 150 days. The results are shown in Table 3.3. Note in this case, history matching only

GOR data gives relatively poor estimates of the parameters nrw and knrwc, which define

the water relative permeability curve. In fact, as expected, the results indicate that the

estimates of these two parameters are essentially equal to their prior means. Matching only

pressure data, however, gives good estimates of all relative permeability model parameters,

although the estimates are not as accurate as those obtained by matching pressure data up

to 300 days; see Table 3.2. Also note that the results of Table 3.3 indicate that the best

estimates are obtained by matching both GOR and pressure data. In particular, the estimate

of krgcw obtained by matching both pressure and GOR data is superior to that obtained by

matching only one type of data. The dimensionless sensitivity of both GOR and pressure to

this endpoint gas relative permeability are both fairly small, but the information content of

the two sets of data is different because pressure is strongly influenced by the total mobility,

but the GOR involves gas mobility divided by oil mobility. Because the information content

for the two data types is different, history matching both pressure and GOR data yields an

improved estimate of krwcw.

True pwf GOR pwf + GOR

nrw 1.90 1.96 2.17 1.91

krwcw 0.40 0.41 0.55 0.40

nrg 2.40 2.34 2.34 2.39

krgcw 0.90 0.79 0.60 0.89

nrow 2.60 2.63 2.78 2.61

nrog 1.70 1.66 1.93 1.69

krocw 0.80 0.80 0.65 0.80

Table 3.3: True and estimated relative permeability parameters; absolute permeability

known; match of data up to 150 days.

From the results of Figs. 3.3 and 3.4, one should note that both the dimensionless sensi-

tivity of pressure to nrg and the dimensionless sensitivity of GOR to nrg are relatively large
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in magnitude. Thus, these dimensionless sensitivities suggest that nrg should be accurately

resolved by matching either pressure or GOR data. The results of Table 3.3 confirm this

expectation. Note, however, that the GOR is much less sensitive to the gas relative per-

meability endpoint value krgcw, and prior to water breakthrough, the sensitivity of GOR

to krgcw is very roughly equal to the negative of the sensitivity of GOR to the krocw, the

end-point oil relative permeability in the two-phase gas-oil system. (The difference in sign

of these sensitivities is expected because the GOR involves krg/krog at times prior to water

breakthrough.) Thus, even though the GOR data resolves nrg accurately, the estimates of

the other parameters in the two-phase oil relatively permeability curves are not very accurate

even though the corresponding estimates of krg/krog are quite close to the true ratio at values

of gas saturations that occur during the first 150 days of production. On the other hand, the

results of Fig. 3.3 indicate that pressure is highly sensitive to krocw, nrg and nrog, three out

of the four parameters that define the two- phase oil-gas relative permeability curves. Thus,

history matching pressure should resolve these three parameters well. Pressure is somewhat

less sensitive to the gas relative permeability endpoint krgcw, and the results of Table 3.3

indicate that a poorer estimate of this parameter is obtained by history matching pressure.

3.4.2 Example 1b

Next, the assumption that the true ln(k) field was known was removed. In this case, ln(k) at

each gridblock and the relative permeability parameters were estimated simultaneously by

history matching various combinations of production data. The estimated log-permeability

field obtained by history matching only pressure data is shown in Fig. 3.5. The corresponding

results obtained by history matching wellbore pressure, gas-oil ratio and water-oil ratio are

shown in Fig. 3.6.

Matching all the data results in a more accurate estimate of the absolute permeability

field than is obtained by matching only pressure data. In particular, matching only pressure

results in several values of gridblock ln(k)’s in the lower right quadrant and the upper center

which are higher than the true values. Matching all data yields values somewhat closer to

the truth. The over estimates of log-permeabilities are balanced by under estimates of the

endpoint relative permeabilities, which are shown in Table 3.4. In this case, it looks like

pressure data is effectively resolving effective permeabilities but not absolute permeability

and relative permeabilities individually, which might cause one to question our discussion of

Stone’s model for three-phase relative permeabilities. Note, however, that when we condition

to all data, we obtain good estimates of both log-permeability and the relative permeability

parameters; see Fig. 3.6, Table 3.4, and Figs. 3.7 and 3.8. Fig. 3.7 shows the two-phase oil-gas
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relative permeability curves obtained by matching only pressure data, and Fig. 3.8 shows

the improved results obtained by matching all data (wellbore pressures, producing WOR

1 8 15

15

8

1

3.7 3.9 4.1 4.3 4.5

Figure 3.5: Log-permeability estimated from history match of pressure; Ex. 1b.

1 8 15

15

8

1

3.7 3.9 4.1 4.3 4.5

Figure 3.6: Log-permeability estimated from history match of pressure, GOR and WOR;

Ex. 1b.
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and producing GOR). As can be deduced from the results of Table 3.4, results of similar

accuracy were obtained for the two-phase water-oil relative permeability curves. Although

we did not show data matches for the examples considered, in all cases, we obtained excellent

data matches. In fact, the matches were of similar quality to the ones that will be shown for

the next example.
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i n i t i a l
k r g ,  p w f
k r o g ,  p w f

Figure 3.7: Prior, true and estimated gas-oil relative permeabilities, history match pwf ; Ex.

1b.

True pwf All

nrw 1.90 1.91 1.91

krwcw 0.40 0.35 0.39

nrg 2.40 2.36 2.40

krgcw 0.90 0.72 0.87

nrow 2.60 2.68 2.62

nrog 1.70 1.64 1.70

krocw 0.80 0.71 0.78

Table 3.4: True and estimated relative permeability parameters; ln(k) estimated simultane-

ously; Example 1b.
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Figure 3.8: Prior, true and estimated gas-oil relative permeabilities, history match pwf , GOR

and WOR; Ex. 1b.

3.4.3 Example 2

In this example, an unconditional realization of log-permeability generated from the prior

model is used as the true log-permeability field. The prior mean for ln(k) is still 4.0, and

the prior means for relative permeability model parameters are shown in Table 3.5. In this

case, we generate a realization of the model instead of the maximum a posteriori estimate.

The randomized maximum likelihood method (Kitanidis, 1995; Oliver et al., 1996) is applied

to generate a realization. To generate a realization with this procedure, we replace mprior

by muc (an unconditional realization of m generated from the prior model) and replace dobs

by a realization of the data duc (i.e., add noise) in Eq. 2.2 and then minimize the modified

objective function. The unconditional realization muc is used as the initial guess when history

matching duc.

Table 3.5 shows the realization of relative permeability model parameters obtained by

history matching pressure, GOR and WOR. Figs. 3.9 and 3.10 present plots of the resulting

realization of the relative permeability curves compared with the true curves and the initial

guesses for the relative permeability curves. Fig. 3.11 shows the unconditional realization of

the log-permeability field which was used as the initial guess in the randomized maximum

likelihood method and Fig. 3.12 shows the realization of the log-permeability field estimated

by history matching production data. Note the history matching process has radically altered
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the unconditional realization in the interwell region. This alteration is necessary to obtain

a good match to the production data. Fig. 3.13 shows the producing gas-oil ratio predicted

at well 1 based on the initial guess for model parameters (solid diamond data points) and

the GOR data (solid triangular data points). The continuous curve represents the GOR

predicted from the model obtained by history-matching. Note the initial model results in a

GOR much lower than the observed GOR at late times. GOR history matches of the same

quality were obtained at other wells. Fig. 3.14 shows the water-oil-ratio data and the data

predicted from the model obtained by history matching. Note that good history matches of

WOR were obtained at all four producing wells.

True Mean All

nrw 1.90 2.3 1.84

krwcw 0.40 0.5 0.40

nrg 2.40 2.1 2.40

krgcw 0.90 0.8 0.96

nrow 2.60 2.3 2.59

nrog 1.70 2.1 1.69

krocw 0.80 0.6 0.84

Table 3.5: True and estimated relative permeability parameters; ln(k) estimated simultane-

ously; heterogeneous reservoir example 2.

3.5 Remarks

It is important to note that data can directly provide information only on the part of the

relative curves that correspond to phase saturations that exist within the reservoir. Since

a power law functional form is used to represent all relative permeability curves, with each

curve described by only two parameters, resolving relative permeabilities corresponding to

low saturations accurately is essentially equivalent to resolving the complete curve accurately.

This explains why accurate estimates of relative permeability curves were obtained even

though maximum gas saturation was less than 0.25. If the gas relative permeability function

were modeled as a B-spline, the portion of the gas relative permeability curve corresponding

to high gas saturations would not be resolved accurately by the available production data.

For example, if the reservoir pressure remains above bubble-point pressure, the estimate of
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gas relative permeability model parameters would be determined by the prior model and

would not be improved by matching production data.

Even though, arguments have been presented in favor of the Stone model (see, for ex-

ample, Aziz and Settari (1979)), Stone’s model II leads to unsettling results. Namely, under

two-phase flow conditions, one can not estimate accurately both absolute permeability and

the coefficients in the power law relative permeabilities. An infinite set of values of absolute

permeabilities and relative permeability coefficients will produce exactly the same produc-

tion data when input to the simulator. We have shown, however, that this does not occur

under three-phase flow conditions when Stone’s Model II is used. In this case, reasonable

estimates of both absolute and relative permeability functions can sometimes be obtained.

Although a mathematical argument supporting this conclusion has been presented, we can

provide no cogent physical explanation of why this should be the case, and believe a critical

re-examination of Stone’s Model II may be warranted.

When the objective is to estimate absolute permeability fields by history matching of

production data, Li et al. (2001a) have shown that the information content of pressure data

is higher than the information content of GOR and both of these data types generally have

more information content than WOR data. The results presented here suggest that this is

also true when estimating absolute and relative permeabilities simultaneously.
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Figure 3.9: Prior, true and estimated gas-oil relative permeabilities, history

match pwf , GOR and WOR; Ex. 2.
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Figure 3.10: Prior, true and estimated water-oil relative permeabilities, history

match pwf , GOR and WOR; Ex. 2. 61
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Figure 3.11: Unconditional realization of log-permeability.
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Figure 3.12: Conditional realization of log-permeability.
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Figure 3.13: GOR data, GOR predicted with initial model and GOR predicted

with history matched model.
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Figure 3.14: WOR data and history matched WOR.
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Chapter 4

LBFGS and Nonlinear Conjugate

Gradient

We wish to be able to history match several hundred production data to generate realiza-

tions of tens of thousands of model parameters. For such problems, it is not feasible to

compute the individual sensitivity coefficients required by standard implementation of the

Gauss-Newton and Levenberg-Marquardt algorithms. Thus, it is reasonable to implement

algorithms that which require only the gradient of the objective function. As the steepest

descent algorithm is very sensitive to scale and often exhibits poor convergence properties

(see, for example, Fletcher (1987)), the only viable algorithms that use derivative information

but ignore explicit computation of the Hessian appear to be quasi-Newton (variable metric)

methods, preconditioned conjugate gradient (PCCG) methods and truncated Newton. The

efficiency of PCCG methods largely rest on finding a good preconditioner. This, however,

is not an easy task and as shown in the examples provided here, we have not found a pre-

conditioner that yields a PCCG method that is as robust or as computationally efficient as

our implementations of the quasi-Newton method known at the limited memory Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. As discussed in section 4.1, our expectation is

that truncated-Newton methods (Nash, 1985) will not be computationally efficient for prob-

lems where the number of production and/or time-lapse seismic data to be history matched

is large; thus, we have not implemented a truncated Newton method.

As discussed in Chapter 2, the MAP estimate of the model is obtained by minimizing

O(m) =
1

2
(m−mprior)

T C−1
M (m−mprior) +

1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs), (4.1)

and a realization of the model conditional to observed data with the covariance of data

64



Reynolds & Oliver DE-FC26-00BC15309 December 15, 2004

measurement errors given by CD is obtained by minimizing

Or(m) =
1

2
(m−muc)

T C−1
M (m−muc) +

1

2
(g(m)− duc)

T C−1
D (g(m)− duc), (4.2)

where muc is an unconditional realization generated from the prior pdf, and duc is obtained

by adding noise to dobs. Throughout, the reminder of this chapter, we simply let O denote

the objective function that we wish to minimize.

4.1 Levenberg-Marquardt, Gauss-Newton and Truncated-

Newton

In generating the MAP estimate, the search direction in the modified Levenberg-Marquardt

(MLM) algorithm can be calculated from Eq. 2.19 which is rewritten here as[
(1 + λk)C

−1
M + GT

k C−1
D Gk

]
δmk+1 = −

[
C−1

M (mk −mprior) + GT
k C−1

D (g(mk)− dobs)
]
, (4.3)

where k is the iteration index and mk gives the approximation to the MAP estimate of the

model at the kth iteration. Using matrix inversions lemmas, it is well known (Tarantola,

1987) that Eq. 4.3 is equivalent to

δmk+1 =
mk −mprior

1 + λk

+CMGT
k

[
(1+λk)CD+GkCMGT

k

]−1[Gk(mk −mprior)

1 + λk

−
(
g(mk)−dobs

)]
.

(4.4)

Choosing λk = 0 in Eqs. 4.3 and 4.4 gives the two corresponding formulas for the Gauss-

Newton (GN) search direction. If the GN or MLM algorithm is applied to construct a

realization by the randomized maximum liklihood method, i.e., by minimizing the objective

function of Eq. 4.2, then dobs and mprior, respectively, should be replaced by duc and muc in

Eqs. 4.3 and 4.4. Once δmk+1, has been computed, we can compute mk+1 = mk + µkδmk+1

where µk is the step size, which can be calculated by either a restricted step method or a

line search algorithm when the Gauss-Newton method is used; see Fletcher (1987). When

MLM is used, as noted in Chapter 2, we use a simple procedure in which we decrease λk by

a factor of 10 if O(mk+1) < O(mk); otherwise, we increase λk by a factor of 10 and redo the

step. An initial value of λ0 = 1000 to 105 works satisfactorily for most problems.

Applying Eq. 4.4 requires solving an Nd × Nd matrix problem, i.e., when λk = 0, the

solution of [
CD + GkCMGT

k

]
x =

[
Gk(mk −mprior)−

(
g(mk)− dobs

)]
, (4.5)

for

x =
[
CD + GkCMGT

k

]−1[
Gk(mk −mprior)−

(
g(mk)− dobs

)]
(4.6)
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If this matrix problem is solved iteratively by the conjugate gradient method, then similar

to ideas of Paige and Saunders (1982), one does not need to explicitly compute G; one

only needs to be able to calculate Gu and GT v for vectors u and v at each iteration of

the conjugate gradient method. Moreover, there is no need to solve the matrix problem of

Eq. 4.5 very accurately at early iterations when we are far from the minimum. The resulting

algorithm is referred to as a truncated Newton method, actually truncated Gauss-Newton in

our case. Mackie and Madden (1993) presented an implementation of this procedure in the

geophysics literature. Chu et al. (2000) introduced a similar procedure into the petroleum

engineering literature for single-phase flow problems. A somewhat different and clearer

presentation of how one can compute Gu and GT v than presented by Chu et al. (2000) can

be found in Abacioglu (2001). Computation of Gu requires a forward run of the simulation.

Computation of GT v requires one solution of the adjoint system.

We have not implemented a truncated Newton procedure because our conjecture is that

the method is not generally robust or efficient for large-scale automatic history matching

problems. For example, if Nd is large and the variances of some data measurements are

small, then the coefficient matrix of Eq. 4.5 may be very ill-conditioned and it may require

a good non-diagonal preconditioning matrix to obtain a conjugate gradient method that

converges sufficiently fast to render the method useful. But since, the coefficient matrix

is not explicitly constructed, it is not clear how to obtain a good preconditioning matrix.

Because of these considerations, we have not implemented a truncated Newton method, but

we can not completely rule out that possibility that an implementation of truncated Newton

that is feasible for large scale history matching problems may be found.

4.2 BFGS and LBFGS Algorithms

When λk = 0, Eq. 4.3 is equivalent to

dk = δmk+1 = −H−1
k gk, (4.7)

where the first equality defines dk, gk is the gradient of the objective function evaluated at

mk, i.e.,

gk = ∇O(mk), (4.8)

and Hk is the Hessian matrix evaluated at mk. If the objective function is given by either

Eq. 4.1 or Eq. 4.2, then

Hk = C−1
M + GT

k C−1
D Gk, (4.9)
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where Gk represents the Nd×Nm sensitivity coefficient matrix evaluated at mk. If Nd and Nm

are both large, the evaluation of all entries of Gk by either the adjoint or gradient simulator

method is not feasible.

In quasi-Newton methods, H−1
k is approximated by a symmetric positive definite matrix

H̃−1
k , which is corrected or updated from iteration to iteration. All updating formulas involve

the difference in gradients, yk = gk+1 − gk, and the difference in iterates, sk = mk+1 −mk.

Here, only variants of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm are consid-

ered because this quasi-Newton method has proved to be more robust in practice than other

quasi-Newton algorithms; see Kolda et al. (1998). It is well known that scaling can improve

the convergence attributes of quasi-Newton (QN) methods, and numerous suggestions have

been made for calculating scaling factors; see, in particular, Oren and Luenberger (1974)

and Shanno and Phua (1978). Here, we identify a scaling procedure that has worked well

for the history matching problems that we have tried.

The BFGS formula for updating the approximation to the inverse Hessian is given by

H̃−1
k+1 = γk

(
H̃−1

k − H̃−1
k yky

T
k H̃−1

k

yT
k H̃−1

k yk

+ vkv
T
k

)
+

sks
T
k

sT
k yk

, (4.10)

where γk is the scaling factor and

vk = (yT
k H̃−1

k yk)
1/2
( sk

sT
k yk

− H̃−1
k yk

yT
k H̃−1

k yk

)
. (4.11)

If no scaling is done, γk = 1 for all k. If scaling is done only at the first update, then γk = 1

for k > 0. In our applications, H̃−1
k+1 is an Nm × Nm matrix. Thus, explicit application of

Eq. 4.10 requires the storage and multiplication of Nm ×Nm matrices where for large scale

history matching problems, the value of Nm may be significantly greater than ten thousand.

In this case, it is not feasible to store Nm×Nm matrices unless they are sparse. The limited

memory BFGS algorithm in the form implemented by Nocedal (1980) provides an alternate

implementation of the BFGS and the LBFGS which avoids explicit computation and storage

of the approximations to the inverse Hessian.

It is well known that the update formula of 4.10 can be rewritten as

H̃−1
k+1 = γkV

T
k H̃−1

k Vk + ρksks
T
k , (4.12)
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where ρk = 1/yT
k sk, and Vk = I − ρkyks

T
k . To motivate LBFGS, Nocedal rewrote Eq. 4.12 as

H̃−1
k+1 =V T

k V T
k−1 · · ·V T

k−p+1(γkH̃
−1
0 )Vk−p+1 · · ·Vk−1Vk

+ V T
k · · ·V T

k−p+2ρk−p+1sk−p+1s
T
k−p+1V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k ,

(4.13)

where p = min{L, k + 1} and the parameter L is an integer chosen by the user. Although

we have used the same notation for the scaling parameter in Eqs. 4.12 and 4.13, the two

equations are identical if and only if γk = 1 for all k > 0. Nocedal (1980) implemented

Eq. 4.13 in a way that avoids storing any matrices except H̃−1
0 and he suggests using a

diagonal matrix for H̃−1
0 , so the storage required is minimal. His algorithm has the following

advantages: (i) for k > 0, H̃−1
k is not computed explicitly or stored; instead, the vector

H̃−1
k gk is formed directly and the search direction δmk+1 is set equal to the negative of this

vector; (ii) H̃−1
k gk is calculated using only dot products of the vectors H̃−1

0 g0, sl and yl,

for l = k − 1, k − 2, ..., max{0, k − L}. If L is greater than the total number of iterations

allowed, then LBFGS becomes equivalent to BFGS if γk = 1 for k > 0. Otherwise, LBFGS

requires less memory and less computational time per iteration than BFGS even if Nocedal’s

implementation is used for the BFGS algorithm. If L is too small, however, the number of

iterations required for convergence is increased. For the history-matching problems we have

considered to date, L = 30 has proved to be a good choice, but we often simply set L = 100

if the size of the problem is not too large. For the history-matching problems we have tried,

values of L larger than 30 only resulted in a small improvement in the rate of convergence,

but using values of L much smaller than 20 often resulted in a noticeable degradation in the

rate of convergence and resulted in higher values of the objective function at convergence.

Nocedal suggested choosing H̃−1
0 as a diagonal matrix. From Eq. 4.9, the obvious choice

would then be the diagonal of CM , but with this choice the smoothing effects of multiplication

by CM are lost and the rock property fields are much rougher than would be expected based

on the prior model for reservoir variables. A better choice is H̃−1
0 = CM , which then requires

storage of CM and multiplication of vectors by CM using sparse matrix techniques. This is

the approach we have adopted in all our history matching applications.
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4.2.1 Line Search, Method 1

Each iteration of the algorithm requires an approximate line search to determine the step

size in the search direction. The choice of the line search can affect both the convergence

properties and the computational efficiency. An exact line search would determine the step

size αk so that α = αk minimizes O(mk + αδmk+1) over α. Each new approximation for αk

requires at least one re-evaluation of the objective function which requires one forward simu-

lation run. As is typical in practice, we do not do an exact line search; instead, we terminate

the line search when the Wolfe conditions are satisfied; see Fletcher (1987). In our approxi-

mate line search, we (a) do one iteration of the Newton-Raphson algorithm (discussed below)

starting with an initial guess equal to zero to obtain the approximation α1
k; (b) determine a

quadratic q(α), such that q(0) = O(mk), q′(0) = ∇O(mk) and q(α1
k) = O(mk + α1

kdk) and

set the new approximation of αk equal to the minimum of q(α); (c) successively cut the step

size by a factor of 10 until we find a model that gives a decrease in the objective function.

We stop the line search whenever the Wolfe conditions are satisfied. In the most cases, this

occurs after step (a) and the necessity to activate step (c) is extremely rare. When (c) occurs

however, the algorithm becomes inefficient, and in some cases, the algorithm becomes stuck

at this point. When this occurs, we are forced to restart the algorithm, and when this occurs

more iterations are required for convergence, i.e., computational efficiency is degraded. Later

in this chapter, we present an improved line search which somewhat improves computational

efficiency. The Wolfe conditions (Dennis and Schnabel, 1996; Fletcher, 1987) will also be

discussed in detail later.

The procedure for generating the first estimate of the step size α by the Newton-Raphson

algorithm is given next. At the kth iteration, we wish to obtain the step size α such that

f(α) = O(mk + αdk), (4.14)

is minimized along the search direction dk. The minimizer can be found by setting the

derivative of the function f(α) equal to zero, i.e.,

h(α) ≡ f ′(α) =
dO(mk + αdk)

dα
=
(
∇O(mk + αdk)

)T
dk = 0. (4.15)

This equation can be solved by using the Newton-Raphson algorithm which is given by

αj+1 = αj −
h(αj)

h′(αj)
, (4.16)

where j denotes the index of the Newton-Raphson iteration. The first derivative of h is given

by

h′(α) =
dh(α)

dα
= dT

k∇
[(
∇O(mk + αdk)

)T]
dk = dT

k H(mk + αdk)dk. (4.17)
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In an exact line search, the Newton-Raphson iteration is stopped when a convergence cri-

terion is satisfied. In general, exact line searches are not done in practice as they lead to

computational inefficiencies. In our case, an exact line search which required more than a

few iterations would be prohibitively expensive if the Newton-Raphson algorithm were used

because each iteration requires the evaluation of the term dT
k H(mk + αdk)dk and this eval-

uation requires at least one simulation run. In our procedure, as mentioned previously, we

do only one Newton-Raphson iteration. To perform one Newton-Raphson iteration, we set

α0 = 0 and then Eq. 4.16 gives

α1 = −
(
∇O(mk)

)T
dk

dT
k H(mk)dk

. (4.18)

Eq. 4.18 involves the Hessian matrix, Hk = H(mk), which is given by

Hk = GT
k C−1

D Gk + C−1
M , (4.19)

so

dT
k Hkdk = dT

k (GT
k C−1

D Gk + C−1
M )dk

= dT
k (GT

k C−1
D Gk)dk + dT

k C−1
M dk

= (Gkdk)
T C−1

D (Gkdk) + dT
k C−1

M dk.

(4.20)

In this equation, we do not need to compute the sensitivity coefficient matrix G directly. We

only need to calculate Gdk which can be done by using a finite-difference approximation as

shown next. (It could also be calculated using one run of the gradient simulator method; see

Abacioglu (2001)). The method given below was originally implemented by Kalita (2000).

The elements of the sensitivity coefficient matrix can be written as

Gi,j =
∂gi

∂mj

, (4.21)

where i = 1, · · · , Nd and j = 1, · · · , Nm. The directional derivative is( dg

dα

)
α=0

=
(dg(m + αdk)

dα

)
α=0

. (4.22)

Let u = dk/ ‖ dk ‖. So we have(dgi

dα

)
α=0

= [∇gi(m)]T u

=
1

‖ dk ‖
[∇gi(m)]T dk. (4.23)
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The ith component of Gdk is given by

[
Gdk

]
i

=
Nm∑
j=1

∂gi

∂mj

dk,j

= [∇gi(m)]T dk, (4.24)

where dk,j denotes the jth component of the vector dk. Substituting Eq. 4.23 into Eq. 4.24,

we obtain

Gdk =‖ dk ‖
( dg

dα

)
α=0

≈‖ dk ‖
g(m + εdk)− g(m)

ε ‖ dk ‖

=
g(m + εdk)− g(m)

ε
,

(4.25)

where ε is a small number. We choose ε based on the infinity norm of dk such that ε satisfies

ε ‖ dk ‖∞= 10−3. Note that calculating Gdk needs one additional simulation run. Once we

have Gdk, it is straight forward to calculate dT
k Hkdk using Eq. 4.20 and then Eq. 4.18 can

be applied to calculate the step size. Application of Eq. 4.20 requires evaluating C−1
M dk. In

our code, we provide two ways to calculate this term. One way is to solve a matrix problem

CMx = dk, (4.26)

for x = C−1
M dk using either LU decomposition or preconditioned conjugate gradient method

(The other way is to approximate C−1
M by using stencil method; see Skjervheim (2002) or

Oliver (1998).)

4.2.2 Convergence Criteria

In our results, the following stopping criteria are used to terminate the algorithm:

1.
| Ok+1 −Ok |
Ok + 10−14

< ε1 (4.27)

and
‖ mk+1 −mk ‖2

‖ mk ‖2 +10−14
< ε2 (4.28)

where k denotes the iteration index and ‖ · ‖2 denotes the l2 norm of a vector. Both

conditions must be satisfied to terminate the iteration. If we use only Eq. 4.27 as the

convergence criterion, the algorithm may converge prematurely.
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2. Specify a maximum allowable iteration number. If the number of iterations exceeds the

specified number, we force the iteration to stop. In our examples, we usually specify

the maximum number of iterations as 300.

4.2.3 Summary of LBFGS Algorithm

The basic LBFGS algorithm follows:

Step 1 Initialization

(a) Provide an initial guess, m0, of the model, calculate the objective function corre-

sponding to m0 and evaluate the gradient of the objective function at m0, i.e., compute

g0;

(b) provide an initial Hessian inverse approximation H̃−1
0 (e.g., CM in our examples),

set the initial iteration index k=0.

Step 2 Calculate the search direction δmk+1 = dk = −H̃−1
k gk and check whether it is a downhill

direction, i.e., check to see if dT
k gk < 0. If dk is not a downhill search direction, set

dk = −H̃−1
0 gk.

Step 3 Calculate the step size αk by a line search procedure as discussed in subsection 4.2.1.

Step 4 Update the model to mc = mk + αkdk.

Step 5 Calculate the objective function based on mc.

Step 6 Determine if the Wolfe conditions are satisfied; if they are satisfied, then set mk+1 = mc

and go to step 7, otherwise do

(a) fit a quadratic and find a step size by minimizing this quadratic, then go to step 4;

(b) if a quadratic fit has already been done, cut the step size by a specified factor (in

our examples we cut the step size by a factor of 10) and go to step 4. All computations

we have done suggest this case does not occur very often.

Step 7 Determine if the stopping criteria are satisfied. If satisfied, then stop; otherwise go to

step 8.

Step 8 Calculate sk = mk+1 − mk = αkdk and yk = gk+1 − gk. Apply Eq. 4.12 or 4.13 to

update the inverse Hessian approximation H̃−1
k+1. Set k = k + 1 and then go to step 2.

Although the procedure presented above is convenient for discussion, we never explicitly

update the inverse Hessian approximation as part of Step 8 after the first iteration. Instead
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we use the algorithm presented by Nocedal (1980) to compute dk = −H̃−1
k gk in Step 2. This

eliminates the need to explicitly compute or store H−1
k for k > 0.

For BFGS and LBFGS, scaling can have a significant effect on the rate of convergence;

Shanno (1970), Oren and Luenberger (1974), Oren (1974), Oren and Spedicato (1976). If

scaling is used, Step 8 needs to be modified. As scaling was considered in detail in last

year’s annual report, here we only give the scaling algorithm we use. Although this scaling

algorithm was shown to be robust for several examples Zhang (2002), there is no theoretical

result that guarantees that it will always work well.

For the LBFGS algorithm, we have found a variant of the optimal switching rule given

by Oren and Spedicato (1976) which works well. Specifically, we compute

τ̃k =
sT

k H̃0sk

sT
k yk

, (4.29)

σ̃k =
sT

k yk

yT
k H̃−1

0 yk

, (4.30)

and then determine the scaling factor γk by the following rule:

γk =

τ̃k if τ̃k < 1.0

σ̃k. otherwise.
(4.31)

In our applications, the prior covariance matrix is used as the initial approximation to

the inverse Hessian, i.e., H̃−1
0 = CM . Although it is not done in the examples presented here,

we have found that in many examples it is satisfactory to compute τ̃k by

τ̃k =
sT

k D̃−1sk

sT
k yk

, (4.32)

where D̃ is a diagonal matrix with diagonal entries equal to the diagonal of CM . Even when

Eq. 4.32 is used instead of the Eq. 4.29, one should still use H̃−1
0 = CM in Eq. 4.30. In

section 4.5, we compare alternative scaling techniques.

For the LBFGS algorithm with initial scaling, we use Eq. 4.31 to compute γ0 but set

γk = 1 at all subsequent iterations. The efficient LBFGS method given by Nocedal (1980)

avoids formation of H̃−1
k for k ≥ 1, only H̃−1

k gk is calculated at each iteration. However, H̃−1
0

must be provided as the initial approximation to the inverse Hessian. In our implementation,

we use H̃−1
0 = CM , where CM is the prior covariance matrix. In algorithmic form, the

procedure given by Nocedal (1980) can be implemented by the following recursive formula

which is reproduced from Zhang (2002):
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1. If k ≤ L, set incr=0 and bound=k; else set incr=k − L and bound=L

2. qbound = gk.

3. For i=bound-1, . . ., 0 
j = i + incr

αi = ρjs
T
j qi+1

qi = qi+1 − αiyj

r0 = H̃−1
0 × q0

For i=0, 1, . . . , bound-1 
j = i + incr

βj = ρjy
T
j ri

ri+1 = ri + sj(αi − βi)

where k is the iteration number; L is the user specified number of previous vectors used

in the algorithm;. In this procedure, ri is equal to the search direction vector given by

−H̃−1
i × gi.

Scaling can also be introduced into this algorithm (see Liu and Nocedal (1989)) by

replacing H̃−1
0 with γkH̃

−1
0 in step 3 of the recursion algorithm.

4.3 Nonlinear Conjugate Gradient

The nonlinear conjugate gradient method for minimization of non-quadratic function can be

motivated by the linear conjugate gradient method which is normally used to solve a linear

equation system. In this section, we focus on the application of the nonlinear conjugate

gradient method to our history matching problem.

In the conjugate gradient method, the search direction is given by

dk+1 = −M−1
k gk + βkdk, (4.33)

where k is the iteration index, gk represents the gradient of the objective function, Mk is

called the preconditioning matrix which is an approximation to the Hessian matrix Hk and

βk is obtained by the Polak-Ribière formula given by

βk =
rT
k+1(M

−1
k+1rk+1 −M−1

k rk)

rT
k M−1

k rk

, (4.34)
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where rk = −gk. As discussed later, the step size can be obtained by a line search. If we

choose the preconditioning matrix Mk to be identity matrix I, then Eq. 4.33 reduces to the

standard conjugate gradient method without preconditioning.

It is well known that the nonlinear conjugate gradient method can be applied to minimize

non-quadratic objective functions; see, Fletcher and Reeves (1964). Although the method

has been applied for the history matching of production data (see, for example, Makhlouf

et al. (1993)), its slow rate of convergence has precluded its use in large scale history matching

problems. The success of the conjugate gradient method for nonlinear optimization depends

on whether we are able to construct a good preconditioner. A good preconditioning matrix

at the kth iteration is a matrix Mk which is a good approximation to the Hessian Hk so that

M−1
k Hk ≈ I. (4.35)

For our problem, the Hessian at the kth iteration is given by

Hk = C−1
M + GT

k C−1
D Gk, (4.36)

An optional preconditioner for the conjugate gradient method would be

Mk = Hk, (4.37)

but the conjugate gradient method requires solving the matrix problem

Mkd̃k = −gk, (4.38)

to form search direction dk+1 using Eq. 4.33. If Mk = Hk, Eq. 4.38 requires the same

computational effort as the direct application of Gauss-Newton method and does not improve

computational efficiency. If we choose Mk = C−1
M , however, then Eq. 4.38 becomes

d̃k = −CMgk, (4.39)

and the calculation of d̃k which is the first term in Eq. 4.33 requires only multiplication of

gk by the prior covariance matrix CM . Kalita (2000) considered the problem of conditioning

a gas reservoir model to well test pressure data by automatic history matching. Both the

Gauss-Newton method and the conjugate gradient method with C−1
M as the preconditioner

were used to minimize the relevant objective function (Eq. 4.1 or Eq. 4.2). Kalita’s results

indicate that the conjugate gradient method was not always more efficient than the Gauss-

Newton method. Moreover, in most cases, the conjugate gradient method converged to a

value of the objective function which was significantly higher than the converged value of

the objective function obtained by the Gauss-Newton method.
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In the preconditioned conjugate gradient method, the preconditioning matrix Mk is used

only in equations like Eq. 4.38. Thus, it is preferable to estimate M−1
k directly instead

of estimating Mk. We would like M−1
k to be an approximation to the inverse Hessian.

This suggests that H̃−1
k constructed from quasi-Newton might be a good candidate for a

preconditioner. The difficulty with this procedure is that we can only approximate the quasi-

Newton H̃−1
k using information in the conjugate gradient algorithm. Our work indicated

that the preconditioner constructed by this scheme works better than C−1
M for some cases,

for example, in the gas reservoir examples shown by Zhang et al. (2001b); and works worse

than C−1
M for some cases, for example, in the three-phase example presented later. The

reason is that the iterates generated by the quasi-Newton method are different from the

iterates generated by the conjugate gradient method. The search direction for the conjugate

gradient algorithm is given by Eq. 4.33 whereas it is given by Eq. 4.7 in the quasi-Newton

method. Different search directions generate different iterates and in turn different yk’s and

sk’s which are used to construct Hessian inverse approximation matrix H̃−1
k . Therefore, the

inverse Hessian approximation generated within the conjugate gradient algorithm will not

be the same as the one generated in a quasi-Newton method. In particular, the “inverse

Hessian approximation” generated with the conjugate gradient procedure may not be equal

to the true inverse Hessian at the Nth iteration for a N -dimensional quadratic function even

if the line search is exact; see Oren and Luenberger (1974) and Oren (1974).

4.4 Computational Requirements

Here we give a rough assessment of the computational efficiency of GN (Gauss-Newton),

MLM (Modified Levenberg-Marquardt), PCG (preconditioned conjugate gradient), BFGS

and LBFGS. Our assessment of the computational efficiency and memory requirements of

the BFGS algorithm, and our implementation of the BFGS algorithm, are based on the

update formula given in Eq. 4.12. In the evaluation of computational efficiency, we count

only the number of adjoint solutions and the number of reservoir simulation runs required

by each method. Moreover, we count one adjoint solution over the total time interval of

a simulation run as one equivalent simulation run, even though in our implementation, an

adjoint solution typically takes less than one half the time of a simulation run. Moreover, we

do not account for computational savings that may be obtained by solving the adjoint system

with multiple right-hand sides in cases where several sensitivity coefficients are calculated;

see Wu et al. (1999). We also assume that only one iteration of the approximate line search

algorithm is done. We provide only a summary of the results without details.
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In GN and MLM, if the data are evenly distributed in the time domain, Nd/2 + 1 sim-

ulation runs are required at each GN or MLM iteration. In BFGS, LBFGS and PCG, the

total computational cost of implementing one iteration is equivalent to 3 simulation runs.

Thus, BFGS, LBFGS and PCG are (Nd/2 + 1)/3 times faster than GN and MLM for each

iteration. For example, if we have 1000 data, one iteration of GN or MLM will require 167

times as much time as one iteration of BFGS, LBFGS and PCG.

Table 4.1 gives a rough estimate of the number of double precision real numbers used by

each algorithm when applied to minimize the objective function of Eq. 4.1 or Eq. 4.2. (Recall

that Nd is the number of production data, Nm is the number of model parameters, and L is

the number of previous vectors used in the LBFGS algorithm.) Only the memory used by

the algorithm itself is counted, e.g., the memory required to run the reservoir simulator is

not included. For convenience, we use one memory unit to stand for the memory occupied by

one double precision real number. From the results of Table 4.1, we see that the full-memory

version of BFGS uses the most memory which is on the order of N2
m; conjugate gradient uses

the least memory which is on the order of Nm, and Gauss-Newton or Levenberg-Marquardt

and limited memory BFGS have intermediate memory requirements. The memory used

by limited memory BFGS depends on the number of previous vectors (denoted by L in

Table 4.1) used to construct the update of the approximate inverse Hessian.

No. of DP real numbers

GN/LM (2 + 2×Nd)×Nm

CG 10×Nm

PCG 10×Nm + memory for preconditioner

BFGS (12 + Nm)×Nm

LBFGS (9 + 2L)×Nm

Table 4.1: Memory used by each algorithm.

4.5 Comparison of Scaling Methods in BFGS and LBFGS

At the end of subsection 4.2.3, we presented the procedure we normally use for scaling in

BFGS and LBFGS. In this section, we present some of the computational examples we

present a more detailed discussion of scaling procedures together with some computational

results.
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The self-scaling variable metric (SSVM) method developed by Oren and Luenberger

(1974) and Oren (1974) is motivated by the desire to choose a γk−1 so that the condition

number of Rk = H
1/2
k H̃−1

k H
1/2
k is as close to one as possible. If H̃−1

k is identical to the inverse

of the true Hessian, Hk, then this condition number is equal to one. For a quadratic objective

function, these authors provide theoretical conditions and a method for computing γk that

insure that (i) λmin ≤ 1 ≤ λmax where λmin and λmax, respectively, denote the minimum and

maximum eigenvalues of Rk; and (ii) the condition number of Rk+1 is less than or equal to

the condition number of Rk. A quasi-Newton method which satisfies these two conditions

is referred to as a self-scaling variable metric method. (Throughout, a quadratic objective

function refers to a quadratic which has a Hessian matrix that is real symmetric positive

definite.) For stability considerations, it is also desirable that the condition number of H̃−1
k

not be too large, see Oren and Spedicato (1976). In particular, if H̃−1
k is a singular matrix,

then for l > k, all ml will be restricted to a subspace of Nm-dimensional Euclidean space; see

Murray (1972). If the model which minimizes the objective function is not in this subspace,

the algorithm can not converge to this model. Oren and Spedicato (1976) proposed an

“optimal” conditioning of variable metric methods; specifically, they provide a procedure

for calculating γk so that an upper bound for the condition numbers of H̃−1
k+1 and H̃kH̃

−1
k+1

is minimized. According to their results, one should actually consider switching between

different update formulas from the general Broyden family from iteration to iteration. As

for the results of Oren and Luenberger, these results assume that the quasi-Newton method

is applied to a quadratic objective function and that an exact line search is performed at each

iteration. From computational experiments, we have found that the general switching rule

proposed by Oren and Spedicato exhibits poorer convergence properties than are obtained

by applying the BFGS update at every iteration and then computing the optimal γk from

the formula they provide. In a sense, however, our preferred method for computing γk for

LBFGS discussed later represents a modification of the switching rule proposed by Oren and

Spedicato.

The principal objection to SSVM algorithms that has been raised in the literature is that

the sequence H̃k+1 does not converge to the true inverse Hessian in n iterations in the case

where the objective function is an n-dimensional quadratic, whereas the BFGS algorithm (in

fact, all variable metric methods from the Broyden family) satisfy this quadratic termination

property if γk = 1 for all k > 0. Motivated by this reasoning, Shanno and Phua (1978)

suggested that one should only scale at the first iteration and then do no further scaling.

In our work, we have found the optimal condition of Oren and Spedicato (1976) is robust

and efficient if the BFGS updating formula, Eq. 4.12, is applied at every iteration. For the
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BFGS method, the Oren and Spedicato (1976) procedure for calculating γk reduces to

γk =
sT

k yk

yT
k H̃−1

k yk

. (4.40)

Shanno and Phua (1978) suggested scaling only H̃−1
0 using γ0 computed from Eq. 4.40 with

k = 0 and then setting γk = 1 for all k > 0. This scheme is the one referred to as the

self-scaling variable metric method in Yang and Watson (1988).

For the LBFGS algorithm, we have found an ad hoc variant of the optimal switching rule

given by Oren and Spedicato (1976) which works well. Specifically, we compute

τ̃k =
sT

k H̃0sk

sT
k yk

, (4.41)

σ̃k =
sT

k yk

yT
k H̃−1

0 yk

, (4.42)

and then determine the scaling factor γk by the following rule:

γk =

τ̃k if τ̃k < 1.0

σ̃k. otherwise.
(4.43)

Again, we can scale only at the first iteration or scale at all iterations.

As discussed previously, in our applications, the prior covariance matrix is used as the

initial approximation to the inverse Hessian, i.e., H̃−1
0 = CM . A somewhat simpler procedure,

which yields a less robust algorithm, is to set H̃−1
0 equal to the diagonal matrix D̃ obtained

from CM by setting all off diagonal elements equal to zero. Even when H̃−1
0 = CM , we have

found that it is satisfactory to compute τ̃k by

τ̃k =
sT

k D̃−1sk

sT
k yk

, (4.44)

instead of using C−1
M in place of D̃−1 in Eq. 4.44. This method avoids solving the matrix

problem CMxk = sk for xk.

Figs. 4.1 (a) and (b) show the behavior of the objective function obtained by using BFGS

and LBFGS, respectively, with and without scaling schemes. The results pertain to history

matching WOR, GOR and pressure data for the 2D three-phase flow example considered

later. In both figures, the diamonds represent the case where BFGS and LBFGS were applied

without scaling.

In Fig. 4.1 (a), the scaling factor was computed from Eq. 4.40. The circular data point

represent the case where scaling was done only at the first iteration and the plus signs
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represent the case where scaling was done only at the first iteration. The behavior for the

two scaling schemes is quite similar, although in the case where scaling was done only at

the first iteration, several more iterations were done before the convergence criteria were

satisfied. The most important thing to note about these results is that scaling does improve

the convergence properties of the algorithm.

When the implementation of Nocedal (1980) is used in the LBFGS method, we can not

use equations like Eqs. 4.40 to compute scaling parameters because H̃−1
k is never explicitly

computed. Because of this, we use Eqs. 4.43 to compute γk. The results of Fig. 4.1 (b) are

based on the application of Eq. 4.43 with Nocedal’s algorithm for efficient implementation of

the LBFGS algorithm. The diamond data points represent LBFGS results with no scaling,

the circles represent results based on scaling at all iterations and plus signs represent results

based on scaling only at the first iteration. Scaling greatly improves the efficiency of both the

BFGS and the LBFGS algorithm. Here scaling at all iterations has a clear advantage over

scaling at only the first iteration, and in the limited examples we have tried, we have found

scaling at all iterations in the LBFGS algorithm is advantageous. It is important to note,

however, that we have no rigorous theoretical basis for this result. Based on extensive com-

putational experiments given in Zhang (2002), we have adopted the procedure represented

by Eq. 4.43 to compute the scaling factors for the LBFGS algorithm.

(a) BFGS (b) LBFGS

Figure 4.1: Comparison of scaling procedures.
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4.6 Results, LBFGS Versus Nonlinear Conjugate Gra-

dient

Here, two computational examples are presented to illustrate the behavior of the optimization

algorithms.

4.6.1 3D Single Phase Gas Example

This example pertains to flow in a single-phase gas reservoir. Reservoir simulation was done

on a 20 × 20 × 4 grid. Two wells were completed in this reservoir. Well 1 was shut in

for two days and then was produced at the rate of 4 × 104 Mscf/day for two days. Well 2

produced at the rate of 3.5×104 Mscf/day for the first two days and was then shut in for the

following two days. We used 22 measured data from each well as conditioning data. Thus, a

total of 44 data were history matched. The reservoir variables are the gridblock porosities,

horizontal and vertical permeabilities and the well skin factors. The total number of reservoir

variables is 4808. Stochastic simulation was done using the randomized maximum likelihood

method. Ten realizations were generated using five different optimization algorithms: (i)

MLM, (ii) preconditioned conjugate gradient (PCG) with CM as the preconditioner (CM-

PCG), (iii) PCG with the approximate inverse Hessian generated from the LBFGS equation

used as the preconditioner (LBFGS-PCG), (iv) BFGS and (v) LBFGS. Table 4.2 gives the

number of iterations required to obtain convergence and the value of the objective function

at convergence for each minimization algorithm and for each realization. Results obtained by

averaging the results for each set of ten conditional realizations are given in the last column

of the table. From the results, we see that LBFGS and LBFGS-PCG behave similarly. The

convergence properties of both of these algorithms are superior to CM-PCG and BFGS;

i.e., LBFGS and LBFGS-PCG require fewer iterations to obtain convergence and yield a

lower value of the objective function at convergence. Based on results presented in the

computational requirements section, on average, LBFGS and LBFGS-PCG are about 7.7

times faster than MLM per iteration. As shown in Table 4.2, however, MLM requires about

2.3 times fewer iterations to converge. Therefore, on average, LBFGS and LBFGS-PCG

are about 3.3 times faster than MLM for this particular example. For significantly larger

problems, MLM would not even be feasible.
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

MLM
Obj. 38 30 21 33 43 28 27 38 40 34 33.2

No. Iter. 8 14 12 8 13 13 21 8 14 10 12

CM-PCG
Obj. 153 146 70 94 347 42 184 213 230 45 152

No. Iter. 12 20 11 23 19 64 5 17 19 23 21.3

BFGS
Obj. 59 52 35 41 70 41 39 53 54 87 53

No. Iter. 33 17 18 19 33 38 18 42 35 52 30.5

LBFGS-

PCG

Obj. 44 51 29 38 57 33 36 47 54 36 42.5

No. Iter. 23 17 23 31 23 38 21 35 20 30 26.1

LBFGS
Obj. 43 41 31 38 55 33 35 54 54 36 42

No. Iter. 34 22 18 38 21 35 26 24 21 34 27.3

Table 4.2: Comparison between algorithms for a 3D single gas example.
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(c) MLM

Figure 4.2: The log-permeability field.

4.6.2 2D Three Phase Example

This synthetic example pertains to a two-dimensional, three-phase flow problem simulated

on 15×15×1 grid. The gridblock porosities are fixed. The truth case, from which synthetic

production data were generated, is shown in Fig. 4.2 (a). Note that there are three distinct

zones with log-permeability uniform in each zone. This example has the advantage that

the problem is small, so all methods require only modest computer resources. Moreover,

because only three log-permeability values are involved, it is easy to visualize the quality
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of the MAP estimate of log-permeability. The prior covariance matrix is generated from an

isotropic spherical variogram with range equal to 6 gridblocks. Four producers are located

near the four corners of the reservoir and one injector is located at the center. GOR, WOR

and flowing bottomhole pressure ( pwf ) data from the four producers and pwf data from the

injector are used as observed conditioning data. The total number of data is 364.

Figure 4.3: Behavior of the objective function.

MLM, CM-PCG, LBFGS-PCG, BFGS, LBFGS with the diagonal of CM as the initial

Hessian inverse approximation (LBFGS-DCM) and LBFGS with the full matrix of CM as the

initial Hessian inverse approximation (LBFGS-FCM) were tested for this problem. Fig. 4.3

shows the behavior of the objective function. As shown, MLM converged in 9 iterations to an

estimate m such that O(m) = 13.3. CM-PCG and LBFGS-PCG, respectively, reduced the

objective function from 906,670 to 28.9 and 35.2 in 100 iterations; at the hundredth iteration,

CM-PCG and LBFGS-PCG had not converged based on the stopping criteria. The BFGS

algorithm converged in 66 iterations to an estimate m such that O(m) = 16.2; LBFGS-

DCM converged in 40 iterations to an estimate m such that O(m) = 13.7 and LBFGS-FCM
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converged in 33 iterations to an estimate m such that O(m) = 14.0. Based on the discussion

in the computational requirements section, for this example, LBFGS-FCM is expected to

be roughly 61 times faster than MLM per iteration. However, MLM required about 4 times

fewer iterations to converge. Therefore, LBFGS-FCM was expected to be about 16 times

faster than MLM overall based on the approximate results of the computational requirements

section. Table 4.3 shows the real CPU time used by the different algorithms. In terms of

the real CPU time, optimization with the LBFGS-FCM algorithm was about 11 times faster

than optimization with MLM. Fig. 4.2 (b) shows the log-permeability field obtained by

LBFGS-FCM. We can see this model is very close to the log-permeability field obtained

by the MLM method and is similar to the true model. The log-permeability field obtained

with the LBFGS-DCM is not shown here but is much rougher than those shown because the

smoothing effect of multiplication by CM is lost when we use only the diagonal of CM as the

initial approximate inverse Hessian.

Also note that in this case, both preconditioned nonlinear conjugate gradient methods

perform relatively poorly, and unlike in the gas reservoir example, generating an approximate

inverse Hessian using LBFGS formulas gives a worse preconditioning matrix than simply

using CM as the preconditioner. We should note that when we apply the LBFGS formula in

conjunction with the preconditioned CG algorithm, the yk’s and gk’s used in the formula are

computed from the CG equations and are hence different than those that would be obtained

with the actual LBFGS method.

Algorithms Scaling Scheme CPU time (seconds)

MLM N/A 2930

CM-PCG N/A 887

LBFGS-PCG All Scaling 904

BFGS Initial Scaling 923

LBFGS-DCM All Scaling 279

LBFGS-FCM All Scaling 263

Table 4.3: Comparison of the CPU time used by different minimization algorithms.

4.6.3 3D Three Phase Example

In this example, a 3D three-phase flow problem on a 40×40×6 grid is considered. The true

log-permeability field is an unconditional realization generated by Gaussian co-simulation.
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Figure 4.4: Unconditional, conditional and true realizations of the log-permeability field in

the top layer.

The top layer of the true log-permeability field is shown in Fig. 4.4 (c). The porosity field is

fixed. Six producers and four water injection wells are completed in the reservoir. Wellbore

pressure (pwf ), GOR and WOR data from the producers and pwf data from the injectors

are used as conditioning data; the total number of data is 880. Fig. 4.4 (a) shows the top

layer of the unconditional realization of the model which was used as the initial guess in the

history-matching process. Fig. 4.4 (b) shows the corresponding layer of the model obtained

by history matching the production data. Optimization was done with the scaled LBFGS

algorithm. The objective function was reduced from a initial value of 3 × 108 to 675 in 70

iterations. Note that the conditional realization obtained by history matching captures the

main features of the true model.

Figs. 4.5 (a) through (c) show the data match for the pressure, GOR and WOR from one

producer. In all these figures, diamonds represent the data obtained from the unconditional

realization, i.e., the initial model, circles represent the observed data and the plus signs

represent the data obtained from the model which was obtained by history matching all

observed data. Note that good matches were obtained. Matches of similar quality were

obtained at all wells. It is important to note that the size of the problem precluded the

application of MLM and the standard BFGS algorithm with the personal computer used for

the study.

The rest of this chapter is devoted to a discussion of modifications we made to the

LBFGS algorithm during the last year of the project. These modifications yield a more
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(a) Pressure at producer (b) GOR (c) WOR

Figure 4.5: Data matches.

robust and computationally efficient procedure for history matching of large scale problems

especially when the initial data mismatch is large. The same scaling procedure (Eq. 4.31 and

stopping criteria (Eqs. 4.27 and 4.28) are used. The differences is that we use a modified line

search and introduce damping and constraints to control overshooting and undershooting.

Undershooting and overshooting refer to obtaining unreasonably large or small value of the

model parameters.

4.7 Improved Line Search

After the LBFGS search direction dk has been computed from

dk = −H̃−1
k ∇O(mk) = −H̃−1

k gk, (4.45)

the step size is computed by a line search procedure. An exact line search would determine

the step size αk as the value of α that minimizes φ(α) defined by

φ(α) = O(mk + αdk), (4.46)

i.e.,

αk = argmin O(mk + αdk). (4.47)

4.7.1 Strong Wolfe Conditions

For the line search strategy, we should impose some conditions on the step size αk to guar-

antee that it provides a sufficient decrease of the objective function. Moreover, to prove that
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the LBFGS method converges, one must impose conditions to ensure that the line search is

done accurately enough so that the new gradient and model update information will give an

updated approximation to the inverse Hessian that is positive definite. One standard way

to ensure a positive definite approximate inverse Hessian and guarantee convergence is to

require that the line search satisfy the strong Wolfe conditions, (Dennis and Schnabel, 1996;

Fletcher, 1987; Nocedal and Wright, 1999). The strong Wolfe conditions require the step

size αk to satisfy

O(mk + αkdk) ≤ O(mk) + c1αk[∇O(mk)]
T dk, (4.48)

|[∇O(mk + αkdk)]
T dk| ≤ c2|[∇O(mk)]

T dk|, (4.49)

where 0 < c1 < 0.5 and c1 < c2 < 1. With φ(α) defined by Eq. 4.46, Eqs. 4.48 and 4.49

may be rewritten as

φ(αk) ≤ φ(0) + c1αkφ
′(0), (4.50)

|φ′(αk)| ≤ c2|φ′(0)|. (4.51)

The first strong Wolfe condition (Eq. 4.48 or 4.50) essentially stipulates that the step size

αk should give a sufficient decrease in the objective function but actually only guarantees

this if the step size is bounded away from zero. In Fig. 4.6, the solid curve represents

the objective function φ(α); the dotted line connecting the solid squares represents the line

φ1(α) = φ(0)+ c1φ
′
(0)α. The first strong Wolfe condition (Eq. 4.48 or 4.50) states that step

size α is acceptable only if φ(α) ≤ φ1(α). The first strong Wolfe condition is not enough

by itself to ensure that the objective function decreases sufficiently, because, as shown in

Fig. 4.6, it is satisfied for all sufficiently small step sizes. An unacceptably small step size

is ruled out by applying the second strong Wolfe condition or curvature condition (Eq. 4.49

or 4.51). The two dashed lines connecting open circles in Fig. 4.6 illustrate the second

strong Wolfe condition. These two lines are the tangent lines to the curve by φ(α) at the

points α1 and α2 where the points α1 and α2 are points such that φ
′
(α1) = c2φ

′
(0) and

φ
′
(α2) = −c2φ

′
(0). The second strong Wolfe condition states that a step size α is acceptable

only if |φ′
(α)| ≤ c2|φ

′
(0)|, i.e., α is in the interval [α1, α2]. The smaller the value of c2,

the smaller the distance between α1 and α2. Thus, choosing a smaller value for c2 makes

the acceptable step size closer to the value of minimizer, however, we expect if we decrease

c2, it will require more iterations of the line search algorithm to obtain an α that satisfies

the second strong Wolfe condition. The choice of c2 is ad hoc. Nocedal and Wright (1999)

recommend c2 = 0.9 for quasi-Newton algorithms, and we use this value in the example

presented later. In the first strong Wolfe condition, we use c1 = 10−4.
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Figure 4.6: Behavior of the objective function.

With the search direction given by Eq. 4.45 and αk determined by an approximate line

search, the new estimate of the model that mimimizes O(m) is given by

mk+1 = mk + αkdk. (4.52)

With sk defined by

sk = mk+1 −mk = αkdk, (4.53)

and yk defined by

yk = ∇Ok+1 −∇Ok, (4.54)

the inverse Hessian generated by the LBFGS algorithm will be guaranteed to be positive
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definite if

yT
k sk = sT

k yk > 0; (4.55)

(Dennis and Schnabel, 1996; Fletcher, 1987; Nocedal and Wright, 1999). Thus, it is critical

to ensure that the line search generate a stepsize αk such that Eq. 4.55 is satisfied.

We now show that Eq. 4.55 is satisfied if the second strong Wolfe condition holds. Let

∇Ok+1 = ∇O(mk+1) = ∇O(mk + αkdk). From the second strong Wolfe condition, we know

[∇Ok+1]
T dk ≥ c2[∇Ok]

T dk since [∇Ok]
T dk < 0 when dk is a downhill direction. It follows

that

yT
k sk = [∇Ok+1 −∇Ok]

T αkdk

= αk[∇Ok+1]
T dk − αk[∇Ok]

T dk

≥ (c2 − 1)αk[∇Ok]
T dk. (4.56)

Thus yT
k sk > 0 is satisfied if we choose c2 < 1 and the second strong Wolfe condition holds.

Thus, the second strong Wolfe condition not only guarantees a sufficient decrease of the

objective function, but also guarantees that the updated Hessian inverse H̃−1
k+1 is positive

definite. It also indicates that if the second strong Wolfe condition fails at one iteration,

the updated Hessian inverse, H̃−1
k+1, may not be positive definite and may result in an uphill

search direction at the next iteration.

In the our first line search method, which was described in 4.2.1, one iteration with

Newton-Raphson is done and if the resulting value of α does not satisfy the strong Wolfe

conditions, a quadratic fit is done. If φ(α) = ∇O(mk + αdk) is a convex function, its

minimizer can be approximated by applying the Newton-Raphson algorithm to find a zero

of the derivative of φ(α). With an initial guess of zero, one iteration of the Newton-Raphson

algorithm for finding a zero of h(α) = φ′(α) is given by

α1 = − h(0)

h′(0)
. (4.57)

If the Newton-Raphson method converges to a value α̂ such that φ′(α̂) = 0, there is no

guarantee that α̂ minimizes φ(α) unless we know φ(α) is a convex function.

At any point in the line search procedure, a quadratic fit can be used to estimate a new

step size. Letting αk be the estimate of the stepsize from Newton-Raphson iteration(s), we

fit a quadratic through φ(0), h(0) = φ′(0) and φ(αk). The value of α at which this quadratic

is zero is given by

αnew
k = − h(0)α2

k

2[φ(αk)− φ(0)− h(0)αk]
, (4.58)
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where φ(αk) = O(mk + αkdk), φ(0) = O(mk), hk(0) = [∇O(mk)]
T dk. Similar to Newton-

Raphson iteration, we can not guarantee that αnew
k corresponds to a minimum unless the

quadratic is convex.

By definition, the objective function is strongly convex if

φ(α) > φ(0) + φ′(0)α. (4.59)

If φ(α) is strongly convex, as is the case for the function φ1(α) shown in Fig. 4.7, then

Eq. 4.57 would yield a positive step size as would Eq. 4.58. The curve through open circles

is the derivative of the objective function φ1(α) and we see this line crosses the α axis at the

point corresponding to the minimum of φ1(α). For such a function, the line search procedure

given in subsection 4.2.1 is adequate. However, a negative or even an infinite step size may

be obtained if the objective function is not strongly convex along the search direction. If

the objective function φ(α) is a linear function, as shown by the line with pluses in Fig. 4.7,

then [φ(αk)− φ(0)− h(0)αk] = 0, and an infinite solution is obtained from Eq. 4.58. If the

objective function is concave in a neighborhood of mk, then [φ(αk)−φ(0)−h(0)αk] < 0 may

occur for small values of αk as is the case for the curve φ2(α) shown by solid triangles in

Fig. 4.7. In this case, a negative step size (αk, 0) can be obtained from Eq. 4.57 and 4.58.

The curve through open triangles is the derivative of the objective function φ2(α).

For the history matching problems of interest to us, we have encountered two common

situations where the objective function may be non-convex. The first case pertains to the

situation where the current model, mk, is close to the “critical” point at which gas or water

breaks through in one or more of the production wells. In this case, if a step size moves the

model across the critical point, then the objective function may decrease more quickly as the

step size increases because the GOR or WOR mismatch term may decrease dramatically. A

non-convex objective function may also occur when the well production condition changes

from constant bottom hole pressure to a constant production rate. In this case, the pressure

mismatch part of the objective function will decrease more rapidly as the step size increases.

As noted earlier, when the second strong Wolfe condition does not hold, the updated

Hessian inverse approximation H̃−1
k+1 may be not positive definite, and the search direction

may become uphill. In this case, if the line search procedure of subsection 4.2.1 is used,

the LBFGS algorithm is restarted with the first search direction given by the initial inverse

Hessian approximation times the negative of the gradient. A restart leads to several iterations

where only a small decrease in the objective function is obtained and this leads to a very

inefficient procedure that requires more iterations than are desirable.

Fig. 4.8 shows one example of the consequence failing to guarantee the Wolfe conditions.

The results presented pertain to the PUNQ history matching example discussed in the next
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Figure 4.7: Behavior of the objective function.

chapter. Three curves are plotted in this figure. The curve through open triangles is the plot

of the step size calculated at each iteration of the LBFGS algorithm with the old line search

procedure. In this history-matching problem, the line search method of subsection 4.2.1 was

used. The curves through solid circles and open circles, respectively, denote the infinity norm

and 2-norm of the search directions vector. We can see that the step size, αk, may change

from 10−10 to 1. In this figure, the magnitude of ‖dk‖ and αk show a big jump at the 38th

iteration and at the 57th iteration. We checked the output data file and found that the Wolfe

conditions failed to hold at one iteration before each of these two iterations. This failure to

satisfy the Wolfe conditions resulted in a non-positive definite updated Hessian inverse, at

iterations k = 38 and k = 57, and thus, the search direction became uphill. The program is

then restarted by setting k = 0 in the LBFGS algorithm. Thus, all the useful information

on the approximate inverse Hessian is lost, and the iterative process restarts with a search

direction equal to the steepest descent direction preconditioned by H̃−1
0 = CM . Then the
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step size became very small, and the convergence criteria were satisfied very soon after 57th

iterations.
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Figure 4.8: Step size and the norm of search
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Figure 4.9: Normalized step size plot.

4.7.2 The New Line Search Algorithm

The improved line search procedure is developed in detail in this subsection. The procedure

involves an method for generating an initial guess for the stepsize followed by a procedure

to improve the approximation to the optimal step size.

Initial Step Size Algorithm.

The idea is based on the assumption that a reasonable estimate of an appropriate step size

for the current iteration can be obtained from the information at the previous iteration. If

the initial step size satisfies the strong Wolfe conditions, there is nothing left to do; the step

size is accepted, the model is updated and we proceed to the next iteration of the LBFGS

algorithm. If the initial step size does not satisfy the strong Wolfe conditions, the modified

line search procedure discussed in the next sub-subsection is employed.

The motivation for generating an initial step size is based on the results of experiments

shown in Fig. 4.8. From an examination of the results of Fig. 4.8, we find that the norm

of model difference between two successive iterations usually does not change substantially,
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i.e.,

‖mk+1 −mk‖ ≈ ‖mk −mk−1‖, (4.60)

or, equivalently,

αk‖dk‖ ≈ αk−1‖dk−1‖. (4.61)

We define βk by

βk = αk‖dk‖, (4.62)

and refer to βk as the normalized step size. The normalized search direction is defined as

dN,k =
dk

‖dk‖
. (4.63)

Eq. 4.53 may be rewritten as

mk+1 −mk = βkdN,k = αkdk. (4.64)

The modified line search algorithm is based on the normalized step size, βk, and normal-

ized search direction, dN,k, instead of the original step size, αk, and original search direction

dk. Because the normalized step size often does not change very much between two succes-

sive iterations, we can easily update it based on its value at the previous iteration, i.e., we

can generate a good initial approximation for the step size for the line search from the step

size used at the previous iteration.

Fig. 4.9 shows a plot of the normalized step size, βk, versus the iteration number. In this

figure, the data points with solid circles are the normalized step sizes based on the infinity-

norm, and the plot with open circles represents results based on the 2-norm. Compared

to the values of αk in Fig. 4.8, the values of βk vary much less from iteration to iteration.

(In our procedure, the infinity norm is used to calculate the normalized search direction.)

Although one could simply use the value of βk from the preceding iteration as the initial

step size for the current iteration, experiments indicate it is better to modify the value by

the procedure discussed in the following paragraph.

Define hk by

hk = hk(βk) = [∇O(mk + βkdN,k)]
T dN,k, (4.65)

which represents the directional derivative of O at mk + βkdN,k. In particular, hk(0) =

[∇O(mk)]
T dN,k represents the directional derivative of O(mk) in the direction dk. If hk(βk) <

0, it indicates that the normalized step size used at kth iteration, βk, is not large enough and

should be increased. On the other hand, if hk(βk) > 0, it implies that the normalized step

size used at kth iteration should be decreased. Procedures for modifying or updating βk are
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discussed below. If φ(β) = O(mk +βdN,k) is a quadratic function of β, then hk(β) = φ′(β) is

a linear function of β. Thus, it is reasonable to use the line through 0 and βk as the equation

for hk(β) and select the modified normalized step size, β∗k , as the solution of hk(β) = 0 which

is given by

β∗k = βk

(
hk(0)

hk(0)− hk(βk)

)
. (4.66)

We define the step size modification factor by ηk = β∗k/βk. With β∗k given by Eq. 4.66, it

follows that

ηk =
β∗k
βk

=
hk(0)

hk(0)− hk(βk)
. (4.67)

To satisfy the second strong Wolfe’s condition, we must have c2hk(0) ≤ hk(βk) ≤ −c2hk(0);

it follows that the step size modification factor needs to be between 1/(1+c2) and 1/(1−c2).

If c2 is very close to 1, then ηk may become very large. To avoid a large value of ηk, an

upper bound for ηk is specified; we use ηk,max = 2 in our algorithm. If ηk > ηk,max we set

ηk = ηk,max. Finally, ηkβk is chosen as the initial guess of the normalized step size for the

next iteration, i.e.,

βk+1 = βkηk. (4.68)

Updating the Step Size.

In order to obtain a step size that satisfies the strong Wolfe conditions, we introduce an

improved step size fit method. We make two assumptions about the objective function

to ensure along each downhill search direction, there exists a interval in which the strong

Wolfe conditions hold. The assumptions are that (1) the objective function O(m) and its

gradient ∇O(m) exist and are continuous functions of the model parameters, and (2) along

any downhill search direction dk, the limit of the directional derivative as the step size goes

to infinity is nonnegative, i.e.,

lim
α→∞

[∇O(mk + αdk)]
T dk ≥ 0. (4.69)

The first assumption is required by the quasi-Newton algorithm. This assumption also

guarantees that along any search direction, dk, both φ(α) = O(mk + αdk) and h(α) = φ
′
(α)

are continuous functions of the step size α. The second assumption (Eq. 4.69) eliminates

the possibility that [∇O(mk + αdk)]
T dk < 0 as α →∞, and prevents the objective function

from approaching −∞ as α → ∞. (Eq. 4.69 holds for history matching problems because

the objective function is always positive. In fact, when a prior model is integrated as a

regularization term, [∇O(mk + αdk)]
T dk will approach positive infinite when α →∞.)
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In the following discussion, we use the normalized step size β, instead of the original step

size α and let βk,1 and βk,2 be the two latest approximation to the step size at the current

iteration where neither step size results in satisfaction of the strong Wolfe conditions. Thus,

we need to calculate a new step size using information on the two values of the objective

function along the search direction, φ(βk,1) and φ(βk,2), and the two corresponding values

of the directional derivative, h(βk,1) and h(βk,2). Without loss of generality, we assume that

βk,2 > βk,1. Since the strong Wolfe conditions are not satisfied at βk,2, we will update both

βk,1 and βk,2 based on the ratio of the two directional derivatives and the values of the

objective function at these two step sizes. In discussing the specific procedure, we let

ρ =
h(βk,2)

h(βk,1)
. (4.70)

• Case 1: ρ < 0.

In this case, h(βk,2) > 0 and there is at least one minimum in the interval [βk,1, βk,2],

see Fig. 4.10. In Fig. 4.10, the solid curve represents the objective function φ(β), the

dashed curve represents its derivative h(β) = φ′(α). The equation of the line through

the points (βk,1, h(βk,1)) and (βk,2, h(βk,2)) is shown by the dotted line in Fig. 4.10 and

is given by

h̃(β) = hβk,1
+

(
hβk,2

− hβk,1

βk,2 − βk,1

)
(β − βk,1). (4.71)

Solving h̃(β) = 0 for βk,new yields

βk,new = βk,2 +
ρ

1− ρ
(βk,2 − βk,1). (4.72)

If |ρ| is very small, βk,new will be very close to βk,2. Similarly, if |ρ| is very large, then,

βk,new will be very close to βk,1, and our new estimate does not yield much improvement.

The step size changes very little for both cases. To avoid such problems, minimum and

maximum values of ρ should be specified. In our implementation, we specify ρmin = −4,

ρmax = −0.25. Then we set ρ = ρmin when ρ < ρmin, and ρ = ρmax when ρ > ρmax

when computing βk,new from Eq. 4.72.

If the strong Wolfe conditions are not satisfied at the new step size βk,new, set βk,2 =

βk,new and replace φ(βk,2) and h(βk,2), respectively, with φ(βk,new) and h(βk,new), re-

spectively, if h(βk,new) > 0. If h(βk,new) < 0, we set βk,1 = βk,new and replace φ(βk,1)

and h(βk,1), respectively with φ(βk,new) and h(βk,new).

We repeat this iterative procedure (Eq. 4.72) until the strong Wolfe conditions are

satisfied.
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Figure 4.10: Step size fit for ρ < 0, case 1.

0
βk ,  n e w

βk , 2

Ob
jec

tiv
e F

un
cti

on
 an

d I
ts 

De
riv

ati
ve

S t e p  S i z e

 O b j e c t i v e  F u n c t i o n
 D e r i v a t i v e
 S t e p  S i z e  F i t

βk , 1

Figure 4.11: Step size fit for 0 < ρ < 1,

case 2.

• Case 2: ρ > 0 and φ(βk,2) < φ(βk,1) ≤ φ(0).

In this case, the objective function will decrease if the step size is increased. The linear

fit equation Eq. 4.72 can still be used to calculate the new step size provided that

ρ < 1, see Fig. 4.11. From Eq. 4.72, we see that βk,new will be very close to βk,2 when

ρ is very small, and βk,new becomes very large when ρ → 1. Thus, similar to Case 1,

we specify minimum and maximum allowable values for ρ with 0 < ρmin < ρmax < 1.

In our implementation, we specify ρmin = 0.25 and ρmax = 0.75. Then we set ρ = ρmax

when ρ > ρmax, and set ρ = ρmin when ρ < ρmin. Also note Eq. 4.72 will generate a

negative step size when ρ > 1. (Fig. 4.12 shows a case where ρ > 1.) However, we

know that the objective function will decrease more as step size increases, and there

must exist an interval beyond βk,2 on which the strong Wolfe conditions are satisfied.

Thus, if ρ > 1 > ρmax, the new step size is calculated with Eq. 4.72 by setting ρ = ρmax.

In Fig. 4.12, hmax = ρmaxh(βk,1).

If the strong Wolfe conditions are not satisfied at the new step size βk,new, we update

βk,1 and βk,2 with the following procedure:

If h(βk,new) > 0, set βk,1 = βk,2 and replace φ(βk,1) and h(βk,1), respectively, with

φ(βk,2) and h(βk,2); also set βk,2 = βk,new and replace φ(βk,2) and h(βk,2), respectively,

with φ(βk,new) and h(βk,new) and then apply the step size calculation procedure of Case

1 until the strong Wolfe conditions are satisfied, as shown in Fig. 4.12. In Fig. 4.12,

βk,new1 is obtained with Eq. 4.72 by setting ρ = ρmax, and βk,new2 is obtained by

replacing β1 with β2, and replacing β2 with βk,new1.

If h(βk,new) < 0 set βk,1 = βk,2 and replace φ(βk,1) and h(βk,1), respectively, with
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φ(βk,2) and h(βk,2); set βk,2 = βk,new and replace φ(βk,2) and h(βk,2), respectively, with

φ(βk,new) and h(βk,new); and then repeat the step size calculation procedure of Case 2

until the strong Wolfe conditions are satisfied or the conditions of Case 1 or Case 3 are

satisfied.

• Case 3: ρ > 0 and φ(βk,2) ≥ φ(βk,1).

In this case, the objective function has both a maximum and a minimum in the interval

[βk,1, βk,2], see Fig. 4.13. The new step size is calculated as

βk,new = βk,1 + 0.5(βk,2 − βk,1). (4.73)

(a) If at the new step size βk,new, h(βk,new) > 0, as shown in Fig. 4.13, set βk,2 = βk,new,

replace φ(βk,2) and h(βk,2), respectively, with φ(βk,new) and h(βk,new); and then apply

the step size calculation procedure of Case 1 until the strong Wolfe conditions are

satisfied.

(b) If at the new step size βk,new, h(βk,new) < 0 and φ(βk,new) ≤ φ(βk,1), set βk,1 = βk,new

and replace φ(βk,1) and h(βk,1), respectively, with φ(βk,new) and h(βk,new); and then

repeat the step size calculation procedure of Case 3 until the strong Wolfe conditions

or the conditions of Case 1 are satisfied.

(c) If at the new step size βk,new, h(βk,new) < 0 and φ(βk,new) > φ(βk,1), set βk,2 = βk,new,

replace φ(βk,2) and h(βk,2), respectively, with φ(βk,new) and h(βk,new); and then repeat

the step size calculation procedure of Case 3 until the strong Wolfe conditions or the

conditions of Case 1 are satisfied.

In most cases, wherever Case 3 occurs, the procedure for Case 3 presented above

leads to Case 1 and we converge to a step size where the strong Wolfe conditions

are satisfied. On extremely rare occasions, however, Case 3 yields a situation where

the Wolfe conditions can not be satisfied. This happens when the search direction

is almost perpendicular to the gradient of the objective function, and we suspect the

difficulties in resolving this case is due to numerical round off errors. If the strong

Wolfe conditions are not satisfied when |βk,new − β2| is smaller than a specified small

number ε (we normally use ε =0.001), then we recompute the search directions as

dk = −H̃−1
k−1∇O(mk) and do the line search for the normalized step size βk. Assumimg

we find a step size which satisfies the strong Wolfe conditions, then we accept mk+1 =

mk + βkdN,k as the updated approximation to the model.
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Figure 4.12: Step size fit for ρ > 1, case 2.
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Figure 4.13: Step size fit for ρ > 0, case 3.

4.8 Rescaling, Damping and Constraints

In addition to the improved line search algorithm used above, we show that rescaling the

variables prior to optimization can reduce the number of iterations required to obtain con-

vergence with the LBFGS algorithm. In addition, damping and/or constraints can be used

to prevent overshooting and undershooting.

4.8.1 Rescaling of Model Parameters

For the LBFGS algorithm, we found via experimentation that the convergence properties are

often improved by rescaling the variables. Here, the original model parameters are shifted by

their prior means mprior,i and rescaled with their standard deviations, the σm,i’s. We define

the new rescaled variables, xi, i = 1, 2, ..., Nm, by

xi =
mi −mprior,i

σm,i

, (4.74)

so

mi = mprior,i + xiσm,i. (4.75)

Note the expectation of the rescaled vector of model parameters, x = [x1, x2, · · ·xNm ]T , is

the zero vector and the covariance matrix for x is the correlation matrix for m. Although

it is well known that a proper rescaling of model parameters can significantly improve the

convergence properties of the steepest descent algorithm, there is no formal theoretical basis

which proves that the rescaling given above will improve the convergence properties of the

LBFGS algorithm. Moreover, it is possible for the condition number of correlation matrix to

be greater than the condition number of the covariance matrix. Nevertheless, for the history
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matching problems we have tried, the above rescaling usually results in faster convergence

of the LBFGS algorithm.

4.8.2 Controlling Overshooting and Undershooting

In some history matching examples, one will find that an optimization algorithm exhibits

undershooting or overshooting, i.e., extremely large or small values of model parameters, e.g.,

gridblock permeabilities and/or porosities, Wu et al. (1999); Li et al. (2003a). This problem

occurs when the initial guess for the model gives predicted data far from the observed data,

i.e., results in a large data mismatch. The problem is most severe when the initial data

mismatches are unbalanced, i.e., at one or two wells, the initial production data mismatches

are much larger than those in the other wells. In this case, the large data mismatches control

the adjustments to the model during the early iterations of the optimization algorithm

and often result in overshooting or undershooting problems in the first few iterations. In

this situation, damping the production data with large initial mismatches is an effective

method to control the problem of overshooting and undershooting. Applying a constrained

optimization algorithm provides a method to keep model parameters within upper and lower

bounds, but to fully control undershooting and overshooting with constrained optimization

may require starting with very tight bounds on the model parameters at early iterations.

4.8.3 Damping the Data Mismatch Term

The data mismatch part of the objective function can be reweighted using a damping matrix

Λ. Λ is a diagonal matrix with its diagonal element given by λi > 0. The objective function

for constructing the MAP estimate with a damped data mismatch term is given by

Odamp(m) =
1

2
(g(m)− dobs)

T C̃D
−1

(g(m)− dobs)

+
1

2
(m−mprior)

T C−1
M (m−mprior). (4.76)

In the preceding equation, the matrix C̃D defined by

C̃D = ΛCDΛ, (4.77)

has replaced the original data covariance matrix CD of Eq. 4.1. A similar modification is

made when constructed a realization using the randomized maximum likelihood method by

minimizing Eq. 4.2. With σ2
d,i denoting the variance of the ith measurement error, i.e., the

ith entry of CD, the ith entry of C̃D is σ2
d,iλ

2
i . Thus if λi > 1, the standard derivation of
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the ith measurement error has been increased by the factor λi and consequently, the relative

weighting of the data mismatch term has been decreased in the objective function of Eq. 4.76

and the relative weighting of the model mismatch term has been increased. The effect is

that, in the minimization process, the changes in the model will be smaller and the tendency

to obtain abnormally high or low values of model parameters will be decreased, i.e., damping

can be used to eliminate overshooting.

Different damping factors can be specified for different types of data and it is also possible

to specify a damping factor for each datum. One way to specify the damping factor for ith

datum, λi, is based on the difference between the observed value and the simulated value

with the initial model. If the difference is larger than κ standard deviations of the noise for

this datum, we damp this data. The damping factors are calculated by

λi = max
[
1,
∣∣∣gi(m0)− dobs,i

κσi

∣∣∣], (4.78)

where gi(m0) is the ith predicted datum for the initial model m0, and κ > 1. This is the

procedure we normally use.

As we wish to use the correct CD in constructing the final estimate or realization, we

stop the program when the original normalized objective function ON(m) = 2O(m)/Nd is

smaller than 3. Then we use the model obtained with damped production data as the

initial model, and rerun the case without damping. This is the procedure used in PUNQS3

history matching example presented in the next chapter, but is also possible to use multistep

procedure. In a multistep procedure, one can adjust the λi every 5 to 10 iterations where

at each readjustment, one applies Eq. 4.78 with gi(m0) replaced by gi(mk) where mk is

the latest iterate. In this process, all damping is removed once we obtain a normalized

objective function smaller than three. The number three is ad hoc; and it would be equally

reasonable to use a value of five or more. The definition of κ is also somewhat ad hoc. If

κ = 3 results in apparent undershooting/overshooting at the end of the first step, κ would

be decreased to 1. We have never encountered this situation. If κ = 3 results in a negligible

change in the objective function, we have over damped and κ should be increased to 10 or

more. Fortunately, one can determine whether the value of κ is appropriate by examining

the results obtained at the first iteration.

4.8.4 Applying Constraints

Conceptually, one can also control undershooting and overshooting by applying constraints.

One has to be careful in doing so, however, and one should not be satisfies with a history
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matched model has many of its model parameters equal to the upper or lower bound specified

by the constraints.

Let ml and mu, respectively, denote vectors with jth entry given by ml,j and mu,j which

respectively represent the the lower and upper bounds for the jth model parameter. One

method for transforming the constrained optimization problem into an unconstrained opti-

mization problem is to find a suitable transformation that can map the upper bounds to ∞
and the lower bounds to −∞. Through this transformation, the boundaries are removed. In

general, the transformation needs to be invertible (one-to-one) which is normally achieved

by using a monotonic transformation. One choice for such a transformation is given by the

logarithmic transformation discussed below.

We first apply a linear transformation to rescale the model parameters by their upper

and lower bounds. Defining

mm,j =
1

2
(mu,j + ml,j), (4.79)

and

mr,j =
1

2
(mu,j −ml,j), (4.80)

the rescaled model parameters are defined by

xj =
mj −mm,j

mr,j

, for j = 1, 2, · · ·Nm (4.81)

When mj → mu,j, xj → 1, and when mj → ml,j, xj → −1. The final transformed parameters

are defined by the following log-transformation:

sj = ln
(xj + 1

1− xj

)
for j = 1, 2, · · ·Nm. (4.82)

The log-transformation maps xj = 1 to sj = ∞, and xj = −1 to sj = −∞. From Eqs. 4.81

and 4.82, we can show that the relationships between the original variable mj and the

transformed variable sj is given by

mj = mm,j + mr,j

(
exp(sj)− 1

exp(sj) + 1

)
, (4.83)

and

sj = ln
(mj −ml,j

mu,j −mj

)
, (4.84)

for j = 1, 2 · · ·Nm. If mj → mu,j, then sj →∞ and if mj → ml,j, then sj → −∞. Thus, the

boundaries due to the constraints are removed. The relationship between the derivatives of

101



Reynolds & Oliver DE-FC26-00BC15309 December 15, 2004

any function f(m) with respect to mj and its derivative with respect to sj can be obtained

from the chain rule. From Eq. 4.83, it follows that

dmj

dsj

=
(mu,j −mj)(mj −ml,j)

mu,j −ml,j

, (4.85)

and then the chain rule gives

∂f

∂sj

=
∂f

∂mj

dmj

dsj

=
(mu,j −mj)(mj −ml,j)

mu,j −ml,j

∂f

∂mj

. (4.86)

The second derivative of f(m) with respect to si and sj for i 6= j is given by

∂2f

∂sj∂si

=
dmi

dsi

∂2f

∂mj∂mi

dmj

dsj

. (4.87)

The second derivative of f(m) with respect to sj is given by

∂2f

∂s2
j

=
∂2f

∂m2
j

[dmj

dsj

]2
+

∂f

∂mj

dmj

dsj

d

dmj

[dmj

dsj

]
, (4.88)

where
d

dmj

[dmj

dsj

]
=

mu,j + ml.j − 2mj

mu,j −ml,j

. (4.89)

For the objective function of Eq 4.1, the model mismatch part of the objective function is

given by

Om(m) =
1

2
[m−mprior]

T C−1
M [m−mprior] = Os(s), (4.90)

where the explicit equation for Os as a function of s can be obtained by replacing each

component of m by the right side of Eq. 4.83. The gradient of the model mismatch part of

the objective function Om(m) with respect to the original model vector m is given by

∇mOm = C−1
M [m−mprior]. (4.91)

The gradient of the model mismatch part of the objective function Os(s) with respect to s

can be obtained from the chain rule and is given by

∇sOs = Λ1C
−1
M [m−mprior] = Λ1∇mOm(m), (4.92)

where Λ1 is a diagonal matrix with j’th diagonal entry given by

λ1j =
dmj

dsj

. (4.93)
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The Hessian matrix of Om(m) with respect to m is given by

Hm = ∇m[∇mOm(m)]T = C−1
M . (4.94)

Because of this equation, the initial approximation of the inverse Hessian is given by CM if

optimization is done in terms of the original model parameters. When the log-transformation

is applied, however, we do optimization in terms of the transformed variables. Thus we need

to find the Hessian based on the model mismatch part in terms of s evaluated at the initial

guess. The Hessian matrix of Os(s) with respect to s is given by

Hs = ∇s[∇sOs(s)]
T , (4.95)

and also can be obtained by the chain rule using Eqs. 4.87, 4.88 and 4.94. It follows that

Hs = Λ1C
−1
M Λ1 + Λ2, (4.96)

where Λ2 is a diagonal matrix with j’th diagonal entry given by

λ2j =
dmj

dsj

d

dmj

[dmj

dsj

]∂Om

∂mj

. (4.97)

As optimization is done in terms of s, we wish to use [Hs]
−1 evaluated at the initial guess for

m as the initial guess of the approximate Hessian inverse in the LBFGS algorithm. However,

in general, [Hs]
−1 is dense and cannot be easily computed for large scale problems. Note,

however, that the diagonal matrix Λ2 is a null matrix if m = mprior or if m equals the average

of its lower and upper bounds. Then the initial guess for the Hessian inverse for the LBFGS

algorithm can be chosen as

H̃−1
0 = Λ−1

1,mpriorCMΛ−1
1,mprior, (4.98)

or

H̃−1
0 = Λ−1

1,aveCMΛ−1
1,ave. (4.99)

The subscript mprior denotes evaluation at m = mprior and the subscript ave denotes eval-

uation at the average of the upper and lower bounds.
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Chapter 5

RESULTS, HISTORY MATCHING

OF PRODUCTION DATA

In this chapter, we show the results obtained for two history matching examples with the

LBFGS algorithm. The first is based on a reservoir model for the North Sea Reservoir. The

second is based on the Tengiz reservoir, which is a over pressured oil reservoir operating

above bubblepoint pressure located in Kazakstan.

5.1 PUNQS3

The PUNQS3 represents a synthetic model based on an actual North Sea reservoir (Floris

et al., 2001).

5.1.1 Reservoir Model Description

The model consists of five layers. The simulation model contains 19 × 28 × 5 grid blocks,

of which 1761 blocks are active. The field is bounded to the east and south by a fault, and

links to the north and west to a fairly strong aquifer. A small gas cap is located in the

center of the dome shaped structure. The field initially contains 6 production wells located

around the gas oil contact. We introduce 66 water injection wells around the WOC line to

simulate the aquifer. The grid block dimensions in the x and y directions is uniform with

4x = 4y = 590.55 (ft).

There are six producers, PROD1(10,22,4/5), PROD4(9,17,4/5), PROD5(17,11,3/4),

PROD11(11,24,3/4), PROD12(15,12,4/5) and PROD15(17,22,4). Here, the numbers in

parentheses refer to the gridblock indices. For example, PROD1(10,22,4/5) means that
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production well one is located in the gridblock centered at (x10, y22) (tenth gridblock in the

x-direction, twenty second gridblock in the y-direction), and perforated in the fourth and

fifth gridblocks in the z-direction.

The porosities in each layer are normally distributed. The horizontal and vertical perme-

abilities are log-normally distributed. The porosity, ln(k) and ln(kz) within each layer are

correlated to each other, but there is no correlation between properties in different layers.

The correlation coefficients between porosity, ln(k) and ln(kz) in each layer are all specified

as 0.8.

The observed data are obtained by adding noise (measurement error) to the “true” pro-

duction data generated by running the reservoir simulator with the true model. In generat-

ing noise, the standard deviations of measurement error for bottom hole pressure, GOR and

WOR, respectively, were specified as σp = 43.509 (psi), σGOR,i = 0.1GORtrue,i (scf/STB),

and σWOR = 0.01 (STB/STB). Measurement errors were assumed to be independent Gaus-

sian random variables with mean zero. By adding noise to the true data, we obtain the

observed or noisy production data which we history match. In all cases, the production

data matched pertain to the first 2920 days (8 years) of production. After history matching

these production data, we generate predictions for another 8.5 years of production based on

the estimated model obtained by history matching. In this example, there are a total of

2604 observed data in dobs, 900 bottom hole pressure data, 852 GOR data and 852 WOR

data. The correct geostatistical model (variogram) for each layer is used to define the prior

covariance matrix.

5.1.2 History Matching Data from PUNQS3

We will discuss four different implementations of our history matching procedure. In all cases,

optimization is done with the LBFGS algorithm and the improved line search procedure

presented in subsection 4.7.2. Rescaling refers to changing variables according to Eq. 4.74

prior to applying the LBFGS algorithm. The four procedures we consider are (1) rescaling

without applying damping or constraints; (2) rescaling with damping but no constraints;

(3) damping without applying constraints or rescaling, (4) no damping with constraints.

Because the constrained algorithm is based on the log-transformation which automatically

does an automatic rescaling of variables, we do not apply Eq. 4.74 if constaints are imposed.

Damping and constrained optimization refer to the procedures discussed in section 4.8

When damping is applied, we first damp the production data using the damping factors

determined by Eq. 4.78 with κ = 3. This optimization step is terminated when the normal-

ized objective function calculated without damping becomes smaller than 3 which normally
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takes five to twenty iterations. Then we use the model obtained with damped production

data as the initial model, and apply the LBFGS algorithm with no further damping.

When we apply the constrained optimization algorithm based on the log-transformation,

the upper and lower bound of model parameters are specified by

mu,i = mprior,i + 1.5σm,i

ml,i = mprior,i − 1.5σm,i (5.1)

where mprior,i is the prior mean of mi, and σm,i is the standard deviation of mi. When the

normalized objective function is smaller than 3, we restart the history matching program

with the unconstrained optimization algorithm. The model parameters are automatically

rescaled with the log-transformation. When we restart with an unconstrained optimization

algorithm, we rescale the variables according to Eq. 4.74 prior to applying the LBFGS

algorithm.

5.1.3 Convergence Behavior
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Figure 5.1: Normalized objective function

for unconstrained optimization.

0 1 4 6 0 2 9 2 0 4 3 8 0 5 8 4 01 6 0 0
2 0 0 0
2 4 0 0
2 8 0 0
3 2 0 0
3 6 0 0

Pr
es

su
re

 of
 P

RO
D1

 (p
si)

T i m e  ( D a y )

 P r e d i c t e d  ( T r u e )
 O b s e r v e d  ( σ = 4 3 . 5 p s i )
 P r e d i c t e d  ( M A P )
 P r e d i c t e d  ( I n i t i a l )

Figure 5.2: Pressure data match,

PROD1, no damping, no constraints.

Fig. 5.1 illustrates the behavior of the normalized objective function for the four different

implementations of the algorithm, In this figure, the curve with open triangles represents the

normalized objective function for implementation 1 (rescaling, no damping, no constraints);

the curve through pluses represents the behavior of the objective function for implementation

2 (rescaling with damping but no constraints); the curve through solid circles represents

implementation 3 (no rescaling with damping but no constraints); and the curve with open

circles is for implementation 4 (the constrained algorithm with no damping).
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For implementation 1, the normalized objective function converged to a value of 3, which

is larger than the expected value of 1. Although results not shown indicate that the conver-

gence properties of the LBFGS algorithm are improved by rescaling, rescaling by itself does

not result in optimum convergence performance. By comparing implementations 2 and 3,

however, we see that rescaling is of value. When damping without rescaling was applied, we

reached the maximum allowable value of 100 iterations without satisfying the convergence

criteria, whereas, with rescaling and damping, we lowered the objective function to a slightly

lower value and LBFGS converged in 60 iterations. For this example, implementations 2,

3 and 4 all resulted in an objective function close to 1 at termination of the algorithm. In

terms of the number of iterations, the constrained implementation and LBFGS with rescal-

ing and damping performed similarly in terms of the rate of convergence, however, as shown

later, the model obtained at convergence with the rescaled damped algorithm appears to be

somewhat more reasonable.
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Figure 5.3: GOR data match, PROD1, no

damping, no constraints.

0 1 4 6 0 2 9 2 0 4 3 8 0 5 8 4 00

4 0 0

8 0 0

1 2 0 0

1 6 0 0
GO

R 
of

 P
RO

D4
 (s

cf/
ST

B)

T i m e  ( D a y )

 P r e d i c t e d  ( T r u e )
 O b s e r v e d  ( 1 0 % )
 P r e d i c t e d  ( M A P )
 P r e d i c t e d  ( I n i t i a l )

Figure 5.4: GOR data match, PROD4, no

damping, no constraints.

5.1.4 Data Match

Fig. 5.2 shows the match of bottom hole pressure data for well PROD1 based on implemen-

tation 1 of the LBFGS algorithm. In this figure, the thick solid curve is the true pressure

data generated with the true model; the plus marks are the noisy or ‘observed’ pressure

data; the thin solid curve represents the predicted bottom hole pressure generated with the

MAP estimate; and the dotted curve is the predicted bottom hole pressure with the initial

model where all model parameters were set equal to their prior means. Similar to the results

shown in Fig. 5.2, the initial pressure mismatches in all six production wells are very large,
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Figure 5.5: GOR data match, PROD1,

damping, no constraints.
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Figure 5.6: GOR data match, PROD4,

damping, no constraints.

over 1000 psi for much of the time period, but after history matching the production data,

the pressure data misfit is greatly decreased.

Fig. 5.3 shows the GOR data match for Well PROD1 obtained with implementation 1

of the LBFGS algorithm. (The notation in Fig. 5.3 is similar to that used in Fig. 5.2.) Well

PROD1 is located at (10,22,4/5). The initial GOR data mismatch in well PROD1 is much

larger than the GOR mismatch at the other wells. The maximum value of the initial GOR

data mismatch for PROD1 reaches 4000 (SCF/STB), which is 100 times larger than the

standard deviation (about 40 SCF/STB) of the GOR measurement error. The GOR data

mismatch term in this well dominates the other production data in the early iterations of

the LBFGS algorithm and leads to a poor GOR data match at other wells. As shown in

Fig. 5.4, the GOR data mismatch in well PROD4 is worse than the initial GOR mismatch

after history matching the production data. The large and unbalanced initial GOR data

mismatch also results in changes in model parameters aimed primarily at reducing the GOR

mismatch in PROD1. Specifically to decrease the GOR in well PROD1, the horizontal and

vertical permeabilities around this well in the second layer are greatly decreased to form a

barrier to flow from the gas cap, as illustrated by the results of Figs. 5.7(b) and 5.8(b).

Because porosity is strongly correlated with the horizontal and vertical log-permeabilities,

the porosity in the second layer is also decreased significantly; results for the estimated

porosity fields are not shown here. It is important to note that Implementation 1, not only

led to abnormally large decrease in properties in Layer 2, but also results in overshooting;

as shown in Figs. 5.11(b) and 5.12(b), implementation 1 (case 1) results in ln(k) values in

excess of 12 and ln(kz) in excess of 10 in Layer 4. The damping procedure introduced earlier
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can be used to eliminate the undershooting/overshooting.

Figs. 5.5 and 5.6 illustrate GOR data matches in well PROD1 and PROD4 obtained when

rescaling and damping (implementation 3) are used in the LBFGS optimization procedure.

We see that GOR data in both wells (PROD1 and PROD4) are well matched with the

observed data and are actually quite close to the true data. The notation used in these

two figures is the same as in Fig. 5.2. We predicted the pressure and GOR performance for

another 8.5 years of production. Figs. 5.5 and 5.6 show that the predicted GOR data for

another 8.5 years of production are also close to the data predicted with the true model.

Similar results were obtained using constrained optimization based on the log transformation.

5.1.5 Truth and MAP Estimates

Figs. 5.7(a), 5.9(a) and 5.11(a), respectively, show the true ln(k) in layers 2, 3 and 4.

Figs. 5.8(a), 5.10(a) and 5.12(a) show the true ln(kz) in layers 2, 3 and 4. Figs. 5.8 through

5.12 also show the MAP estimates of ln(k) and ln(kz) obtained with Implementations 1,

2 and 4 of the LBFGS algorithm. The MAP estimates obtained with Implementation 3

were fairly similar to those obtained with Implementation 2. Note, the estimated model

obtained by history matching without damping (implementation 1) exhibits overshooting and

undershooting. In particular, the maximum horizontal log-permeability in layer 4 increases

from 3.68 to 14, and the minimum horizontal log-permeability in layer 1 decreases from 4.06

to -3. Figs. 5.7(b) and 5.8(b) illustrate the MAP estimates of ln(k) and ln(kz) in layer

2 obtained with implementation 1. Note that both ln(k) and ln(kz) in layer 2 are greatly

decreased. Figs. 5.11(b) and 5.12(b) illustrate the MAP estimates of ln(k) and ln(kz) in

layer 4 for implementation 1. Note that overshooting occurs.

From Figs. 5.7(c), 5.7(d), 5.8(c), 5.8(d), 5.11(c), 5.11(d), 5.12(c), 5.12(d), we can see

that the undershooting and overshooting problems are controlled by applying the damping

procedure (implementation 2) or the constrained optimization algorithm (implementation 4).

We obtain permeability fields with no evidence of undershooting or overshooting. Although

not shown, a reasonable estimate of the porosity field was also obtained with implementations

2 and 4.
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Figure 5.7: True and MAP estimates of ln(k) in layer 2, implementations 1, 2 and 4.
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Figure 5.8: True and MAP estimates of ln(kz) in layer 2, implementations 1, 2 and 4.
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Figure 5.9: True and MAP estimates of ln(k) in layer 3, implementations 1, 2 and 4.
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Figure 5.10: True and MAP estimates of ln(kz) in layer 3, implementations 1, 2 and 4.
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Figure 5.11: True and MAP estimates of ln(k) in layer 4, implementations 1, 2 and 4.
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Figure 5.12: True and MAP estimates of ln(kz) in layer 4, implementations 1, 2 and 4.
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5.2 Tengiz Reservoir

In this section, we consider history matching buildup data from the Tengiz reservoir which

is located in the Pri-Caspian Basin. Tengiz is a carbonate reservoir which was formed

during Devonian and Carboniferous time. Figure 5.13 shows that the central or “platform”

portion of the reservoir is relatively flat. As shown in Fig. 5.13, the platform is bounded by

faults or lithologic breaks and surrounded by gently sloping “flanks” of carbonate debris; see

Chambers et al. (1997) and He and Chambers (1999) for additional details on the geology.

The index on the x and y axes is the number of gridblocks, i.e., the areal grid for the original

reservoir model was 90× 100.

Tengiz is an undersaturated oil reservoir produced by 44 wells. With very rare exception,

all flowing bottomhole pressures have been maintained above bubble point pressure, which

is equal to 3586 psi. Initial reservoir pressure is 11950 psi at a datum of 14765 ft subsea.

Current average reservoir pressure remains more than twice the bubble point pressure, and

consequently, the oil flows as a single phase in the reservoir.

Our history match of static pressure data from pressure buildup surveys is based on an

upscaled reservoir model of Tengiz. The upscaled reservoir model of Tengiz was created by

removing most of the sloping flanks near the outer edges of the reservoir and upscaling the

remainder of the reservoir to a 59×49×9 grid. In the upscaled model, the gridblock sizes in

the x and y directions are almost uniform with values between 815 and 825 ft. Gridblock sizes

in the z direction are non-uniform with values varying between 15 and 150 ft. Figure 5.14

shows a contour map of the top of the reservoir with well locations.

5.2.1 Geostatistical Model

The top boundary of the first simulator layer follows the top boundary of the Tengiz structure

(Figs. 5.13 and 5.14) and other simulator layers are similarly curved. Thus, when the values

of a rock property are shown for a layer, the reader should remember that the layer gridblocks

are at different depths. In such figures, the greatest depths occur in the gridblocks near the

lower-left. At these “flank” gridblocks, the values of rock properties are lower than those

associated with the central platform or the reservoir.

We were supplied an initial reservoir model on the upscaled reservoir simulation grid.

This model represents muc when history matching pressure data by minimizing the objec-

tive function of Eq. 4.2. Throughout, this initial model is referred to as the unconditional

realization. Figs. 5.15 and 5.16, respectively, show the unconditional realization of porosity

(left), horizontal log permeability (middle) and vertical log permeability (right) for layers 2
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Figure 5.13: A 3D plot of the Tengiz field.
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Figure 5.14: A contour plot of the upscaled model with the well locations.
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Figure 5.15: Initial porosity (left), ln(k) (middle) and ln(kz) (right) of layer 2.Phi_prior_Layer4_dat_4
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Figure 5.16: Initial porosity (left), ln(k) (middle) and ln(kz) (right) of layer 4.

and 4.

Figs. 5.15 and 5.16 suggest that it would be appropriate to use a two-zone geostatistical

model to define a prior geostatistical model for the purpose of history matching in a Bayesian

setting. But since our history matching process will use muc as the initial guess and muc

already reflects two zones, it may not be necessary to define distinct geostatistical models

for the two zones and we do not do so.

The prior covariance matrix, CM in Eq. 4.2 is generated by specifying a variogram model.

We specify the variances (sills) of φ, ln(k) and ln(kz), respectively, as 2.6092× 10−4, 0.8073

and 0.9376. The correlation coefficients between φ and ln(k), φ and ln(kz), and ln(k) and

ln(kz), respectively are given by 0.9096, 0.662 and 0.5. These values were determined from
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the unconditional realization, muc, and differ somewhat from the variances used by He and

Chambers (1999) who used variances of 3.2×10−4 and 0.225, respectively, for φ and ln(k), but

did not specify a variance for ln(kz) and did not specify values of the correlation coefficients.

We use a anisotropic spherical variogram with principle direction coincident with the x axis.

The correlation ranges in the x, y and z direction, respectively, are given by 6561.6 ft, 4921.3

ft and 164.04 ft. These ranges are same as those used by He and Chambers (1999). Cross

covariances are generated using the screening hypothesis Xu et al. (1992); Chu et al. (1995b).

5.3 The History Matching Process

He and Chambers (1999) matched pressure transient data from a drawdown/buildup tests

conducted on several wells. Rather than doing a full history matching procedure as done here,

they matched individual well tests and extrapolated the results to the whole field. They used

a Gauss-Newton method and thus were forced to reduce the numbers of model parameters in

order to reduce computational time and memory requirements. They tried two methods to

reduce model parameters, one is based on adjusting permeability only within the radius of

investigation of the welltest and the other is based on determining a permeability multiplier

for each well by matching pressure transient data and then interpolating the multipliers

across the entire reservoir.

In our work, we have only one to three pressure data at each well and match all data

simultaneously using the LBFGS algorithm. In addition to the pressure data, we were given

monthly rate data. Although the measurements of pressure were obtained during buildup

tests, the pressure data supplied were “equivalent flowing wellbore pressures,” obtained by

using the ideas of Peaceman (1978, 1983). To obtain a history match, the objective function

of Eq. 4.2 will be minimized with muc given by the initial model supplied by Chevron; see

Figs. 5.15 and 5.16.

The model parameters, or reservoir variables, to be history matched include all gridblock

porosities, horizontal log-permeabilities and vertical log-permeabilities. The skin factors at

the wells are fixed at values determined independently and the reservoir geometry is not

varied during the history matching procedure. Thus, the number of model parameters is

Nm = 3N where N is the number of gridblocks. With the upscaled grid, N = 26, 019 and

the number of model parameters estimated by history matching is 78, 057. The vector of

model parameters is given by

m = [mT
φ , mT

k , mT
kz

]T , (5.2)

where mφ is an N -dimensional column with its jth entry equal to the porosity of gridblock
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j, mk is an N -dimensional column with its jth entry equal to the horizontal log-permeability

for gridblock j, and mkz is an N -dimensional column with its jth entry equal to the vertical

log-permeability for gridblock j.

5.3.1 Measurement/Modeling Errors

In history matching pressure data from the Tengiz reservoir, dobs is a vector containing the

105 pressure measurements we wish to history match and CD is the covariance matrix for

measurement errors which are assumed to be Gaussian. However, if modeling errors also

exist and are Gaussian, they can and should be included (Tarantola, 1987) by adjusting CD.

Unfortunately, the knowledge of the magnitude and structure of modeling errors is seldom

if ever sufficient to determine the proper adjustment to CD. In the Tengiz field example,

we will match buildup pressures that, in some cases, have apparently been converted to

equivalent flowing bottomhole pressures using ideas of Peaceman (1978, 1983). Modeling

errors include any errors in converting measured buildup pressure data, errors due to using

average monthly rates especially for any month long period that contains a measured buildup

pressure that will be history matched and the inability of the simulator to predict correct

bottomhole pressures even if the true reservoir geometry and rock and fluid properties are

known and used as simulator input. In the Tengiz field example, gridblocks are extremely

large. Measured field data does not have any relationship to a reservoir simulation grid, but

because of local truncation errors, the grid structure can have a significant impact on the

history matching results even for extremely simple problems, Zhang et al. (2003).

Because we do not have knowledge of CD, we do not add noise to dobs to generate

associated data duc. Instead, we simply set duc = dobs in Eq. 4.2 when history matching the

Tengiz pressure data. Because we do not have direct knowledge of measurement/modeling

errors, we simply assume measurement/modeling errors are uncorrelated so that CD is a

diagonal matrix with ith diagonal entry equal to σd,i.

Even though the buildup pressure data for Tengiz were presumably measured very accu-

rately, our history matching exericise indicates that some of the σd,i’s must be set to very

high values to account for modeling errors. Under the preceding assumptions about CD, the

data mismatch part of the objective function we minimize can be written as

Od =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

=
1

2

Nd∑
i=1

(gi(m)− dobs,i

σ2
d,i

)
. (5.3)
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5.3.2 History Matching Pressure Data

We match all measured pressure data simultaneously, and adjust gridblock porosity, hori-

zontal log-permeability and vertical log-permeability during the history matching process by

minimizing the objective function of Eq. 4.2 with duc = dobs, i.e., we minimize

O(m) =
1

2

[
(m−muc)

T C−1
M (m−muc) +

Nd∑
i=1

(gi(m)− dobs,i

σ2
d,i

)]
(5.4)

using the LBFGS algorithm presented in the previous chapter. The initial guess is set equal

to the initial model muc. A total of 105 observed pressure data from 44 wells were history

matched. These pressure data span the historical period from April 1991 to January 1998.

We specified the oil production rate for each well based on monthly historical production

data, and also set a minimum bottom hole pressure of 3000 psi for all field simulation runs.

Figs. 5.17 and 5.18 show the monthly oil rate (solid black curve) and the bottom hole

pressure (solid red curve) as a function of time at wells T-16 and T-320 predicted with the

initial model, muc. Observed data that are history matched are shown as open circles and

the flow rate at the time of this pressure measurement is shown by a black cross. Note

Well T-320 has only 2 observed pressure data. The red stars represent predicted bottomhole

pressures corresponding to the observed data where the predicted data are generated from

the simulator with the initial model as input.

Fig. 5.19 shows all 105 pressure data that are history matched plotted against their index

number. Also shown as black crosses are the monthly oil production rates corresponding to

the pressure data.

We will try different approaches for obtaining a reasonable history match. When con-

straints are imposed using the log-transformation, Eq. 4.84, no rescaling of model parameters

is done. When constraints are not imposed model parameters are rescaled by using 4.74.

Although we apply rescaling when constraints are not imposed, for the Tengiz example

considered here, rescaling of model parameters has a negligible influence on the results.

Method 1, No Constraints, No Damping.

This is the basic case. The pressure data are matched with the unconstrained LBFGS

optimization algorithm without damping the pressure data. The variances of pressure mea-

surement errors, the σd,i’s, are all set equal to 100 (psi2). (Originally, we tried simply setting

the variances equal to 1 psi2 but obtained even more severe undershooting/overshooting

problems than are obtained with all variances equal to 100.)
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Figure 5.17: Production data of well T-

16.
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Figure 5.18: Production data of well T-

320.
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Figure 5.19: Production data of all wells.
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Figure 5.20: Pressure mismatch for all

data, method 1.

In Figs. 5.17 and 5.18, the blue dotted curves with pluses represent wellbore pressure

predicted from the model obtained by history matching all 105 pressure data using Method

1. Note the variation of the predicted bottomhole pressure with time is much less than that

exhibited by the pressure response predicted with the initial model; this is largely a result
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of the fact that the horizontal log-permeabilities around the well are greatly increased in the

history matching process. The objective function (Eq. 4.2) (with all diagonal entries of CD

equal to 100 psi2) decreases from 4.688× 105 to 6.626× 104 after 11 iterations of the LBFGS

algorithm. Additional iterations do not result in any significant decrease.

In Fig. 5.20, the open red circles represent the pressure data mismatches generated with

the initial model, i.e., pinitial,j − pobs,j, for j = 1, 2, · · · 105, where pobs,j = dobs,j denotes the

jth observed pressure data and pinitial,j denotes the corresponding pressure data predicted

with the initial model. In Fig. 5.20, the black crosses represent the pressure data mismatch

obtained with the history matched model. There are 16 data with an initial mismatch larger

than 1000 (psi); the maximum initial data mismatch is 5056 (psi). After history matching,

pressure mismatches for these data are greatly decreased. However, for some other data,

pressure mismatches actually increase somewhat. After the history matching, the maximum

pressure mismatch is still high, 1168.9 (psi), and there are 12 data with a mismatch exceeding

500 (psi).

Most initial pressure mismatches are similar to those shown in Figs. 5.17 and 5.18, i.e.,

wellbore pressures predicted with the initial model are lower, and in many cases, significantly

lower, than the corresponding observed pressures. This suggests that horizontal permeability

will have to be increased, in some cases significantly, to obtain a match of observed pressure

data. Figs. 5.21 and 5.22 show the estimated porosity (left), horizontal log-permeability

(middle) and vertical log-permeability (right) in layers 2 and 4 obtained by history matching

the pressure data. The maximum value of ln(k) in layer 2 reaches 9.9, and the minimum

value of ln(k) in layer 2 reaches -8.6. Given that the unconditional realization (starting

model) has no ln(k) value above 2.8 or below -2.8 and the variance of ln(k) is 0.9, it is

apparent that we have encountered extreme undershooting and overshooting in the history

matching process. The log-permeability field for layer 4 also exhibits some abnormally high

values (see Fig. 5.22), but the overshooting here is not quite so extreme.

5.3.3 Analysis of Overshooting and Undershooting

Based on the discussion in section 4.8 and the results of the PUNQS3 example presented

earlier in this chapter, it seems possible that the undershooting and overshooting problems

are caused by high and unbalanced initial pressure mismatches. Unbalanced means some

initial pressure mismatches are much higher than others.

For example, well T-320 is located in gridblock (55,27). This well is perforated through

layers 1 to 6. The initial pressure mismatch in this well at 2434 day is 3067.04 psi. At 2434

day, the observed pressure, 11470 psi, is much larger than the value of 8403 (psi) obtained

120



Reynolds & Oliver DE-FC26-00BC15309 December 15, 2004Phi_layer2_MAP_dat_4

May 28 2004 Page 1 of 1

10 20 30 40 50

10
20
30
40

0.0 0.1 0.2

Kxy_layer2_MAP_dat_4

May 18 2004 Page 1 of 1

10 20 30 40 50

10
20
30
40

-8 -4 0 4 8

Kz_layer2_MAP_dat_4

May 28 2004 Page 1 of 1

10 20 30 40 50

10
20
30
40

-9 -7 -5 -3 -1 1

Figure 5.21: Estimated porosity (left), ln(k) (middle) and ln(kz) (right) of layer 2, method

1.
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Figure 5.22: Estimated porosity (left), ln(k) (middle) and ln(kz) (right) of layer 4, method

1.

with the initial model. To match the high observed pressure, the permeabilities around well

T-320 are greatly increased. In layer 4, the horizontal log-permeability around this well

increased from 0.28 to 5.5.

Large initial pressure mismatches tend to cause large changes in the model at early

iterations and for problems like the one considered here, one can sometimes obtain unrealistic

property fields. If a well is completed in more than one layer, pressure data is not sufficient

to resolve individual layer values of horizontal permeability; at best, only thickness averaged

horizontal permeability is well resolved by pressure data, He et al. (1997). The thickness
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averaged horizontal permeability for nl homogeneous layers is denoted by k̄ and defined by

k̄ =
1

ht

nl∑
j=1

kjhj. (5.5)

Here, kj and hj, respectively, represent the permeability and thickness of the j′th layer, and

ht is the total thickness of the nl layers open to flow. One can obtain the same the value of

k̄ with an infinite number of combinations of values of the kj’s. One possibility is to set all

kj = k̄, but another possibility is to set some kj values far less than k̄ and other kj values

far greater than k̄.

For example, well T-102 is located in gridblock (39,7), i.e., the gridblock index in the

x-direction is 39, and gridblock index in the y-direction is 7. This well is perforated through

layers 1, 2 and 3. We have only one observed pressure data at this well, 11004 psi at 1521

days. This observed pressure is much larger than the value of 7907.6 psi calculated with the

initial model. Thus, the initial pressure mismatch in well T-102 is 3096.4 (psi). Because the

wellbore pressure predicted with the initial model differs significantly from the corresponding

observed pressure, large changes in the values of rock properties in gridblocks penetrated by

this well and nearby gridblocks are made during the history matching process. As shown in

Fig. 5.21, the horizontal log-permeabilities around well T-102 in layer 2 are decreased to -8,

but in layer 3, the horizontal log-permeabilities around well T-102 increased from 1.6 to 4,

and overall, the thickness average permeability increases.

The preceding results are consistent with our conjecture that unbalanced initial pres-

sure data mismatches causes big changes in model parameters, i.e., causes the overshoot-

ing/undershooting problems noted earlier.

Method 2, Damping, No Constraints.

In order to control the overshooting and undershooting problems that can result from large

and unbalanced initial pressure data mismatches, we apply the damping procedure discussed

earlier. The damped or modified variances are specified by Eq. 4.78. For this example, we

found a value of κ = 3 results in overdamping. With this value, the LBFGS algorithm results

in only very small changes in the initial model and very little improvement in the pressure

match. Thus, we tried κ = 10. We applied a three step process where at the end of each

step, we replaced m0 in Eq. 4.78 by the latest estimate of the model.

After three steps consisting of 16 total iterations, we obtained the results shown in

Figs. 5.23 and 5.24, which show the estimated porosity (left), horizontal log-permeability

(middle) and vertical log-permeability (right) fields in layers 2 and 4 obtained using Method

2 when applying the LBFGS optimization procedure.
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Figure 5.23: Estimated porosity (left), ln(k) (middle) and ln(kz) (right) of layer 2, method
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Figure 5.24: Estimated porosity (left), ln(k) (middle) and ln(kz) (right) of layer 4, method

2.

The model parameters shown in Figs. 5.23 and 5.24 are more consistent with the geo-

statistical model than those in Figs. 5.21 and 5.22. Overshooting and undershooting has

been eliminated by applying damping. However, the pressure match is not as good as the

one obtained with Method 1. Fig. 5.25 shows the pressure mismatch based on the initial

model (open red circles) compared with the pressure mismatch based on the history matched

model (black crosses). Note the observed pressure matches are not as good as obtained with

Method 1, Fig. 5.20.

In Fig. 5.26, the open triangles on the red dashed curve is the oil rate, and the black crosses
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Figure 5.25: Pressure mismatch for all

data, method 2.
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Figure 5.26: Oil rate and pressure mis-

match, method 2.

on the solid black curve is the pressure mismatch after history matching using Method 2. We

see that the high pressure mismatches are mostly associated with pressure data obtained in

a time period with a large monthly oil rate. This suggests there may be some inconsistency

between pressure and rate data. As noted earlier, pressure data corresponds to static buildup

pressures converted to flowing wellbore pressure.

Method 3, Constraints and Damping.

The fact that Method 2 gave only a small decrease in the objective function suggests that

we over damped data mismatch terms. Thus, we should increase κ. On the other hand,

less damping tends to increase the possibility of overshooting and undershooting. Thus,

Method 3 combines damping with constrained optimization based on the log-transformation

introduced in Eq. 4.84. In Eq. 4.82, we set κ = 30. The upper bound and lower bound of

ln(k) used as constraints are determined by

ln(k)upper = ln(k)uc,max + σln(k), (5.6)

and

ln(k)lower = ln(k)uc,min − σln(k), (5.7)

where ln(k)uc,max and ln(k)uc,min, respectively, denote the maximum and minimum values of

ln(k) displayed by the unconditional (initial) model, and σln(k) is the standard deviation of
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ln(k) in the prior model. The upper bounds and lower bounds of ln(kz) and the upper bound

of φ are determined with the same procedure, except that the lower bound of porosity is

specified by

φlower = min[0.005, φuc,min − σφ], (5.8)

because φ must be positive.
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Figure 5.27: Objective function perfor-

mance for Methods 1, 2, and 3.
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Figure 5.28: Pressure mismatch, method
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Figure 5.29: Estimated porosity (left), ln(k) (middle) and ln(kz) (right) of layer 2, method

3.
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Figure 5.30: Estimated porosity (left), ln(k) (middle) and ln(kz) (right) of layer 4, method

3.

Fig. 5.27 shows the behavior of the objective function (based on setting all measurement

error variances to 100 psi2) obtained by history matching pressure data by application of

the LBFGS algorithm with Methods 1, 2 and 3. The objective function decreases from

4.688 × 105 to 6.626 × 104 after 11 iterations for Method 1 (no damping, no constraints).

The objective function reduction is mainly caused by improving the match of of data that

have very large initial misfits. When we only apply damping procedure (Method 2) with

β = 10, the objective function does not decrease significantly. When we apply less damping

(β = 30) with constraints, the objective function decreases from 4.688× 105 to 3.33× 104.

Fig. 5.28 illustrates the pressure mismatches obtained after history matching using the

LBFGS algorithm with Method 3. All pressure mismatches are reduced to a value less

than 1000 (psi) and most pressure mismatches are less than 500 (psi). Overall the pressure

matches are as good as those obtained by Method 1, but with Method 3, undershooting and

overshooting is controlled. Figs. 5.29 and 5.30, respectively, show the estimated porosity

(left), horizontal log-permeability (middle) and vertical log-permeability (right) in layers 2

and 4 obtained by history matching pressure data using Method 3. The results obtained are

qualitatively consistent with the results obtained by Chambers et al. (2001) with pressure-

transient tests and production logs. Chambers et al. show that the production indices along

the north side and the east side of the central platform are high. We obtained similar results.

Figs. 5.29 and 5.30 show that in the north side (bottom side in these figures) and east side

(right side in these figures) of layer 2 and layer 4, the estimated porosity, ln(k) and ln(kz)

have larger values.

126



Reynolds & Oliver DE-FC26-00BC15309 December 15, 2004

Analysis of Data Consistency.

Part of the difficulty in obtaining a good match of all pressure data is undoubtedly due to

the fact we do not have a reliable procedure to account for modeling error. In particular,

it appears that some of the observed data are not consistent with the production schedule.

With all methods large pressure mismatches that remain after history matching tend to be

associated with pressure data from time periods where the corresponding monthly rate is

high. (This is most apparent with the results obtained from Method 2; see Fig. 5.26. A more

careful examination of the pressure rate data, indicates that most large pressure mismatches

that remain after history matching correspond to a pressure observed at the final time of a

large flow rate period where the rate for the next month is significantly lower, usually zero.

As the actually pressure measurements were obtained from a buildup test, it seems possible

that such pressure data actually correspond to the low rate period, i.e. the time record is

wrong. As we do not have access to the raw data, we can not verify whether this conjecture

is true.

Method 4 refers to the case where we essentially remove such “abnormal” data from

the set of observed data to be history matched by setting σ2
d,i = 1010 psi2, and setting

the variances of all other pressure “measurement” errors to 100 psi2. With Method 4, we

obtained rock property fields fairly similar to those obtained for Method 3, but somewhat

rougher and containing larger region of high and low horizontal low permeability values.

The pressure matches for all but the abnormal data were also similar to those obtained

using Method 3. We also tried Method 4 starting with the model obtained with Method 3

as the initial guess. In this case, the rock property fields were smoother than obtained with

Method 4 and not radically different than those obtained with Method 3.

Comment.

When pressure data were history matched without imposing damping of data mismatch

terms or constraints (Method 1), abnormally large increases in horizontal permeability were

obtained. As noted above, we believe that the difficulty is due to inconsistencies between

some pressure and rate data. We should note, however, that the reservoir is fractured

and thus one might conjecture that data should be matched with a dual porosity model.

Chambers et al. (2001), however, indicate that pressure transient tests show no dual porosity

behavior.
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Chapter 6

TIME LAPSE SEISMIC DATA

Although inverse problems in general, and automatic history matching problems in particu-

lar, are underdetermined, results derived from small amounts of data still provide estimates

that are less than satisfying. It is clearly beneficial to make use of some type of “space-dense”

data to improve the resolution of the estimate in the gridblocks far away from well locations.

Of all usual data related to petroleum engineering, seismic data is the most promising can-

didate for improved spatial coverage. In a preliminary study (Dong and Oliver, 2002), we

have showed that seismic impedance change data directly reflects the elastic properties of

reservoir and are sensitive to permeability and porosity. We believe that seismic impedance

change data will often provide useful constraints to our history matching procedure.

Since automatic history matching can ultimately be reduced to a minimization problem

whose objective function includes both model mismatch and data mismatch parts, the choice

of an efficient optimization method is very important, especially when processing large-

scale problems. For our applications, we only consider gradient based optimization methods

because non-gradient based optimization methods require far too many iterations to be of

practical usefulness. Among those gradient based methods, some require the formation of

the Hessian matrix as well as computation of the gradient of objective function. Formation

of the Hessian is very expensive to compute in large-scale problems, so we have eliminated

them from consideration. Instead, we use methods that only require the computation of

the gradient of the objective function. According to Zhang and Reynolds (2002b), of the

methods they evaluated, the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)

method is likely to be the most successful method for large-scale history matching problems.

Thus, for our history-matching problem with both production data and seismic impedance

change data, we have only used LBFGS method for the minimization.

It is usually possible to assume that the errors in production data are uncorrelated.
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Because of the way the seismic impedance data are derived, it is not possible to make the

same assumption of measurement error independence for the seismic impedance change data,

which means that the part of the CD matrix attributed to seismic impedance data will almost

certainly not be diagonal. When we apply our method to field problems, such correlation

among seismic impedance change data will have to be carefully evaluated (Aannonsen et al.,

2002).

6.1 Automatic History Matching

The easiest way to include seismic impedance change data is to assume that one set of

data is available before production begins, and the other set is available after a period of

production. Then, for these two sets of seismic impedance data, it is necessary to compute

their derivatives with respect to primary variables and model parameters, which depends on

the relationships of impedance to saturations and pressure. In this work, we use Gassmann

(1951) and Han (1986) equations. We will summarize the Gassmann and Han equations and

their derivatives with respect to primary variables and model parameters in this report. The

impedance Z is given by

Z = ρVp =

√
ρK +

4

3
ρ2V 2

s , (6.1)

where, K is the bulk modulus, ρ is bulk density and Vs is shear wave velocity. All of them

can be computed by Gassman and Han equations and poro-elastic properties as

ρ = (ρoSo + ρwSw + ρgSg)φ + (1− φ)ρsolid , (6.2)

K = Kgrain
Kframe + Q

Kgrain + Q
, (6.3)

Q =
Kfluid (Kgrain −Kframe)

φ (Kgrain −Kfluid)
, (6.4)

log10 Kframe = log10 Kgrain − 4.25φ , (6.5)

Kgrain =
1

2

[
γKc + (1− γ)Ks +

KsKc

Ksγ + Kc(1− γ)

]
, (6.6)

1

Kfluid

=
Sw

Kw

+
Sg

Kg

+
So

Ko

, (6.7)

Vs = 3520.0− 4910.0φ− 1890.0γ . (6.8)

Using the chain rule, the derivatives of impedance with respect to pressure and saturation

are
∂Z

∂P
=

1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂P
+

8

3
V 2

s ρ
∂ρ

∂P

)
, (6.9)
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where
∂ρ

∂P
= φ

(
So

∂ρo

∂P
+ Sw

∂ρw

∂P
+ Sg

∂ρg

∂P

)
, (6.10)

and
∂Z

∂Sw

=
1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂Sw

+ ρ
∂K

∂Sw

+
8

3
V 2

s ρ
∂ρ

∂Sw

)
, (6.11)

where
∂ρ

∂Sw

= φ (ρw − ρo) , (6.12)

∂K

∂Sw

=

((
K2

grain −KgrainKframeφ−KgrainKframe

)
∂Kfluid

∂Sw

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

−

(
(Kgrain −Kgrainφ−Kframe)

∂Kfluid

∂Sw

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

×
(
K2

grainKframeφ + Kfluid

(
K2

grain −KgrainKframeφ−KgrainKframe

))(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
) , (6.13)

and
∂Kfluid

∂Sw

=
1

Ko
− 1

Kw(
Sw

Kw
+ 1−Sw−Sg

Ko
+ Sg

Kg

)2 , (6.14)

∂Z

∂Sg

=
1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂Sg

+ ρ
∂K

∂Sg

+
8

3
V 2

s ρ
∂ρ

∂Sg

)
, (6.15)

where
∂ρ

∂Sg

= φ (ρg − ρo) , (6.16)

∂K

∂Sg

=

((
K2

grain −KgrainKframeφ−KgrainKframe

)
∂Kfluid

∂Sg

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

−

(
(Kgrain −Kgrainφ−Kframe)

∂Kfluid

∂Sg

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

×
(
K2

grainKframeφ + Kfluid

(
K2

grain −KgrainKframeφ−KgrainKframe

))(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
) , (6.17)

and
∂Kfluid

∂Sg

=

1
Ko
− 1

Kg(
Sw

Kw
+ 1−Sw−Sg

Ko
+ Sg

Kg

)2 , (6.18)
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∂Z

∂φ
=

1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
((

K +
8

3
ρV 2

s

)
∂ρ

∂φ
+ ρ

∂K

∂φ
+

8

3
ρ2Vs

∂Vs

∂φ

)
, (6.19)

where
∂Vs

∂φ
= −4910.0 , (6.20)

∂ρ

∂φ
= ρo (1− Sw − Sg) + ρwSw + ρgSg − ρsolid , (6.21)

∂K

∂φ
=

((
K2

grain −KfluidKgrain

) (
φ∂Kframe

∂φ
+ Kframe

)
−KfluidKgrain

∂Kframe

∂φ

)
φ
(
K2

grain −KfluidKgrain

)
+ KfluidKgrain −KfluidKframe

−
(
Kframeφ

(
K2

grain −KfluidKgrain

)
+ KfluidK

2
grain −KfluidKgrainKframe

)(
φ
(
K2

grain −KfluidKgrain

)
+ KfluidKgrain −KfluidKframe

)
×

(
K2

grain −KfluidKgrain −Kfluid
∂Kframe

∂φ

)
(
φ
(
K2

grain −KfluidKgrain

)
+ KfluidKgrain −KfluidKframe

) , (6.22)

and
∂Kframe

∂φ
= −4.25 ln(10)Kgrain10−4.25 . (6.23)

There is no direct dependance between seismic impedance and permeability k, so the sen-

sitivity of seismic impedance with respect to permeability depends entirely on the indirect

effect of permeability on pressure and saturation.

6.1.1 LBFGS Method

Previous studiess in TUPREP have showed that BFGS method is the most successful quasi-

Newton method for history matching. However, its drawback is that it needs to store the

Hessian matrix approximation, which will be impractical when large scale models are con-

sidered. The alternative is the limited memory BFGS (LBFGS) method of Nocedal (1980).

LBFGS method only requires storage of a few vectors and uses these vectors to implic-

itly construct Hessian matrix approximation. A detailed discussion of the application of

the LBFGS method to large scale history-matching problems can be found in Zhang and

Reynolds (2002b).

6.2 Results

To test the effect of integration of both seismic impedance change data and production data,

we used two models. One is a small synthetic model and the other one is a semi-synthetic
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model created from a middle east oil field. In the following sections, we will discuss them in

detail.

6.2.1 Synthetic Model

This small synthetic model has two layers. Each layer has 10×10 gridblocks with size equal to

40 ft. The vertical size of each gridblock is 30 ft. The only model parameter we adjust is log of

horizontal permeability. For vertical permeability, we use a multiplier, here equal to 0.1, and

for porosity, we fix it at the true value 0.2 in every gridblock. To compare matching results

before integration of seismic impedance change data and after such integration, we divide

each layer into three different zones. In each zone, horizontal permeability is homogeneous.

However, in each zone, the horizontal permeability has a different value. Since there are very

obvious edges among these three zones, it is easy to decide if one matching result is better

than another. If a method is performing well, such edges would presumably be clearer. Here,

we only use bottom hole pressure Pwf as production data.

The true values of ln(k) in three zones are 4.0, 4.2 and 4.6, which can be seen from

Fig. 6.1. The white point in lower-right corner denotes an injection well and the black one

is a production well. Both of them perforate thoroughly in two layers. This is a three-phase

problem.

Matching Production Data Only

In each well, we use 10 pressure data to do the history matching so that totally we have

20 pressure data to adjust 200 model parameters. We use a homogeneous value, 4.0, as the

initial guess and the prior model. Final matching results are in Fig. 6.2 and Fig. 6.3. From

Fig. 6.2 and Fig. 6.3, we can see that from production data alone, it is not possible to obtain

a good estimate of the permeability field. The boundary between the blue area and the red

area is more like arc than straight line, which simply reflects the symmetry of the problem

and the area of water saturation change from the injection well in that corner.

Combination of Seismic and Production Data

In this section, we evaluate the improvement in the estimate after the integration of seis-

mic impedance change data. Results for the same problem can be seen in Fig. 6.4 and

Fig. 6.5. Compared to Fig. 6.2, Fig. 6.3 and Fig. 6.1, the permeability estimate from

integration of both seismic impedance change data and production data is better than the

estimate obtained from only using production data. Moreover, it is much closer to the true
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Figure 6.1: True log horizontal permeability (ln(k)) field
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Figure 6.2: Estimate of log horizontal permeability field in top layer by integration of pro-

duction data only
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Figure 6.3: Estimate of log horizontal permeability field in bottom layer by integration of

production data only
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Figure 6.4: Estimate of log horizontal permeability field in top layer by integration of both

production data and seismic impedance change dataMatch_Result_Seismic_Well_Kxy_Bottom_txt_s
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Figure 6.5: Estimate of log horizontal permeability field in bottom layer by integration of

both production data and seismic impedance change data
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field, especially its boundary of the homogeneous regions is much clearer. The reason for the

improvement is that the spatial density of seismic impedance change data provides more con-

straints in gridblocks that are far from well locations. Obviously, seismic impedance change

data makes the possible solution space narrower and can provide much better estimates of

properties, which is what we predicted when we performed the preliminary investigation

work. In summary, adding seismic impedance change data into automatic history matching

is feasible and provides improved estimates.

6.2.2 Semi-Synthetic Model

Because our final goal is to apply the method to a field problem, it is important to test the

method on real field data. As an intermediate step, before application to real field data, we

are applying the method to a large “field-scale” problem rather than just using it on small

synthetic model. One possible candidate is the simulation model from a field provided by an

industry member to TUPREP. When TUPREP obtained that data, the initial aim was to

test automatic history matching method on a large scale single-phase real field problem. At

this time, we intend to investigate if seismic impedance change data can give a reasonable

estimates of properties in history matching problems. This goal requires comparison with a

true field. We used the first five layers of the reservoir created by the company geoscientists

as the true geological model. It would presumably be unknown, except for observations at

well locations. Using a covariance estimated from the model, we created a new synthetic

model by Sequential Gaussian Simulation (SGS). A comparison of the supplied model with

our model can be seen from Table 6.1. The real field has a very high initial reservoir pressure

Parameters True Field Semi-Synthetic Model

True Model N/A Synthetic model

Prior Model Synthetic model with facies change Generated by SGS

Well Completion Partially perforated Fully perforated

Initial Reservoir Pressure 11950 Psi 4000 Psi

Bubble Point Pressure 3586 Psi 3586 Psi

Number of Layers 9 5

Gridblocks in Each Layer 59× 49 59× 49

Table 6.1: Comparison between real field and semi-synthetic model

and relatively low bubble point pressure. Under such conditions, it remains single-phase even
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after a long production period. A deep, single-phase reservoir, would not be a good candidate

for 4D seismic. Thus, in order to create a more realistic example, we changed the initial

reservoir pressure to be slightly above the bubble point pressure, to ensure that free gas will

evolve soon after production begins.

Creation of Prior Model

Sequential Gaussian Simulation was used to create the prior porosity field, which also served

as the initial guess. The prior horizontal permeability field, was generated directly from the

porosity field using a functional relationship. That correlation equation is generated from

cross plot of porosity and horizontal permeability in well locations, which can be seen in

Fig. 6.6. Using regression, we have the relationship as
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Figure 6.6: Correlation between porosity and log horizontal permeability in well locations

ln kh = 2.41073− 7.3652× exp

(
− φ

0.04419

)
. (6.24)

The prior horizontal permeability field was computed directly from Eq. 6.24 once we had

simulated the porosity field. The relationship between vertical and horizontal permeability
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was also estimated from a crossplot. A satisfactory relationship is provided by

kv = a× kh , (6.25)

where, a is a constant multiplier. In our semi-synthetic model, we assume that a = 0.002 to

create the vertical permeability field.

To summarize, we use the true model to create observation data, here seismic impedance

change data. Then, we adjust both the prior porosity field and horizontal permeability field

to match the data from the true field. We intend to match our observation data as well

as possible. In this example, we do not use any production data, in order to assess the

constraint the seismic impedance change data provides in such large scale problems.

The true horizontal permeability field in the first four layers can be seen in Fig. 6.7. The

prior permeability field for the first four layers is in Fig. 6.8. The fifth layer of both true

permeability field and prior field can be seen in Fig. 6.9 and Fig. 6.10. Similarly, true and

prior porosity field of each layer are in Figs. 6.11, 6.12, 6.13 and 6.14. From true permeability

and porosity field, we can see that there is an obvious discontinuity in properties between

the right lower part and the left upper part of the reservoir in each layer. This is a depth

effect, higher porosities and permeabilities occur at shallower depths. Most of the wells are

also located in this area, which gives more gas after production than in the low permeability

and porosity area. This difference makes the seismic impedance change quite different in

these two areas, which can be seen in Fig. 6.15 and Fig. 6.16. In the left region, because

of lower gas saturation, the seismic impedance change value is low. The region on the right

side has a higher value because of higher gas saturation. Moreover, with increase of depth,

reservoir pressure becomes higher, which makes it more difficult for gas to come out, then

seismic impedance change values become smaller with depth.

History Matching

In this report, we used only the seismic impedance change data—not the change in amplitude—

and assumed that each gridblock had a seismic impedance change data so that the number

of data was as same as the number of gridblocks. We adjusted both horizontal permeability

and porosity, so the number of model parameters was twice the number of gridblocks. The

minimization required 100 iteration loops, which is the maximum number of iterations al-

lowed in our code. The square summation of data mismatch at the end of the iterations was

lower than the total number of data, which implies that the resulting model was acceptable.

The objective function behavior and data mismatch part decrease can be seen in Fig. 6.17(a)
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and Fig. 6.17(b). The matching results of horizontal permeability field and porosity field

can be seen in Fig. 6.18, Fig. 6.19, Fig. 6.20 and Fig. 6.21.

From these maps, we make the following observations,

1. Seismic impedance change data provides useful constraints in history matching prob-

lem. Especially in large scale models, the use of seismic impedance change data can

decrease uncertainty. The results for both permeability and porosity include features

which are similar to the true model.

2. Estimates of the porosity field are better than the estimates for permeability. The

reason is almost certainly that seismic impedance change data is more sensitive to

porosity than to permeability.

3. From the top layer to the bottom layer, reservoir pressure increases, which means that

there less free gas evolves in the deeper layers. This decrease in gas saturation results

in smaller changes in seismic impedance in deeper layers. Thus, the results in deeper

layers were not as good as the results in top layers. This can be observed clearly from

Fig. 6.18 and Fig. 6.19.

4. The properties in the upper left region of the simulation model do not change very

much after integration of time-lapse seismic because there are almost no wells and the

depth is greater, which makes it more difficult to have gas accumulated there. Thus,

we do not have significant seismic impedance change in that region.

Finally, we note that integration of seismic impedance change data into automatic history

matching seems to provide dramatically improved reservoir models, even when the data are

noisy. The spatial density of the data appears to compensate for the sparsity of production

data, especially in large scale models.

6.2.3 Real Case Study from Bay Marchand field, Gulf of Mexico

The basic principles and work flow of integration of both time-lapse seismic impedance

change data and production data have been demonstrated clearly using the semi-synthetic

and synthetic models discussed previously, which establishes the effectiveness of using seismic

impedance change data in reservoir characterization work. In this section, we will apply the

method to a real case, Bay Marchand field in the Gulf of Mexico. Since all data in this

study were provided by Chevron-Texaco, the discussions shown here are limited to general

descriptions, instead of detailed data and results analysis.
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Figure 6.7: True log horizontal permeability field in first four layers
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Figure 6.8: Prior log horizontal permeability field in first four layers
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Figure 6.9: True log horizontal permeability field in the fifth layer
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Figure 6.10: Prior log horizontal permeability field in the fifth layer
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Figure 6.11: True porosity field in first four layers
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Figure 6.12: Prior porosity field in first four layers
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Figure 6.13: True porosity field in the fifth layer
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Figure 6.14: Prior porosity field in the fifth layer
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Figure 6.15: Seismic impedance change in first four layers
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Figure 6.16: Seismic impedance change in the fifth layer
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Figure 6.17: Objective function and seismic data mismatch decrease
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Figure 6.18: Estimate of log horizontal permeability field in first four layers
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Figure 6.19: Estimate of porosity field in first four layers
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Figure 6.20: Estimate of log horizontal permeability field in the fifth layer
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Figure 6.21: Estimate of porosity field in the fifth layer
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Introduction

The Bay Marchand field is a mature field with production history over 40 years. The area

in our history matching study is the 7100 sand, which has strong aquifer support. There

are 7 producing wells in this area. Some of the 7 wells are sidetrack wells of the straight

wells drilled from the same wellheads. Most of the wells are completed within the middle

and lower zones, where both the porosity and the permeability have generally good values.

Monthly oil, water and gas production rate were provided, from which the water oil ratio

(WOR) and gas oil ratio (GOR) were calculated and used as observed production data in

our history matching work.

A reservoir simulation model with 53×18×23 gridblocks was also provided, along with the

initial permeability and porosity distributions. Most of the gridblocks have sizes varying from

400 ft to 100 ft along X and Y directions, while the size along Z direction is more variable

with some gridblocks less than 1 ft in thickness. There are three relative permeability zones

in the simulation model, one of which, along with pore volume modifications, was used to

simulate the aquifer support. Two 3D seismic surveys are available for Bay Marchand. The

first was shot in 1987 by Chevron and the other one was acquired in 1998 by Geco-Prakla,

which is now WesternGeco.

The field and the seismic surveys are described thoroughly by Behrens et al. (2002).

Rock physics model

To compute the predicted seismic impedance change from the output of the reservoir sim-

ulator, a rock physics model is required, which describes the relationship between changes

in reservoir properties such as pressure and fluid saturations, and seismic properties such as

velocity and impedance. In Bay Marchand field, the rock physics model is a combination of

theoretical and empirical relationships.

If the shear modulus G instead of shear wave velocity Vs is used, the seismic impedance

Z can be computed using Eq. 6.26,

Z =

√
ρ

(
K +

4

3
G

)
, (6.26)

where, the bulk modulus K of fluid saturated rocks is still computed using the Gassmann

equations (Gassmann, 1951), shown in Eq. 6.3 and Eq. 6.4. The bulk modulus of fluid is

computed using Eq. 6.7. The bulk modulus of grain, Kgrain, was assumed to be constant in

all calculations. The bulk modulus of dry frame was computed using

Kframe = a0 + a1Pdiff + a2

√
Pdiff +

(
b0 + b1Pdiff + b2

√
Pdiff

)
φ , (6.27)
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where φ is porosity, a through b are coefficients and Pdiff = Poverburden − Ppore, which is the

pressure difference between overburden pressure and pore pressure. The unit of pressure is

Psia and the unit of Kframe is GPa. The shear modulus of dry frame G was computed using

Eq. 6.28,

G = c0 + c1Pdiff + c2

√
Pdiff +

(
d0 + d1Pdiff + d2

√
Pdiff

)
φ , (6.28)

where c through d are empirically determined coefficients. Since the influence of fluid sat-

uration on shear modulus is small, the shear modulus of dry frame is also used as shear

modulus of fluid saturated rock.

Although the seismic impedance computations in Bay Marchand case study are differ-

ent from the computations using the Gassmann and Han equations in synthetic cases, the

derivatives can be easily calculated using the chain rule, which only changes the source terms

in our history matching code. Therefore, only small modifications to the code were required.

Reservoir simulation model analysis

The 23-layer model provided by Chevron-Texaco was up-scaled from a 59-layer fine geological

model. It was used as the start point for our history matching. The 23-layer model was

unstable in the history matching mode so we decided to up-scale the 23-layer model to a

3-layer model, which was used as the initial model for our history matching. In addition,

there are some non-active gridblocks, which were not subjected to adjustments during history

matching.

After up-scaling, a variogram analysis of the natural log of the horizontal permeability

values was performed. A spherical model was used to fit the experimental variogram in the

two principle directions. The porosity field and the cross variograms between the porosity

and horizontal permeability were computed using the same spherical variogram function, but

with different sills respectively. The correlation coefficient between porosity and horizontal

permeability used in the program was assumed to be 0.5 for history matching.

The adjustable parameters in our history matching procedure were porosity and hori-

zontal permeability. The vertical permeability was calculated by multiplying a factor to the

horizontal permeability, which is equal to 0.1.

Impedance change noise analysis

As mentioned previously, there are two seismic surveys available in Bay Marchand field. We

used a set of time-lapse amplitude data to compute the impedance change data, which were

calculated based on the reflection coefficient changes at the interface between the 7100 sand
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Figure 6.22: Objective function reduction in Bay Marchand field (Production data matching

only)

and the overlying shale. The impedance change data calculated from the amplitude change

were used as the observed seismic impedance changes in our history matching.

Since neither pressure nor saturation should change in the aquifer zone, the impedance

changes should be close to zero. Therefore, any impedance changes in the aquifer can be

assumed to be due to non-repeatable noise. Thus, the seismic impedance change data in

the aquifer were used to estimate the magnitude and correlation of the noise. An analytical

variogram model was chosen to fit the experimental variogram in the two principle directions.

The variogram model was used to construct the data noise covariance matrix CD required

in the objective function. The variance of the impedance change noise is at the order of 109.

History matching

Although the simulation model provided by Chevron-Texaco is quite good, it was necessary

to improve the starting model by first matching the production data. The production-

matched model was then used as the start model for history matching seismic impedance

change data. Because the primary effect is due to the advancement of water into the field,

we focus on the water breakthrough time at all 7 wells. The gas oil ratio (GOR) changes at

the 7 wells are less important compared to water cut changes although the GOR data were

used as observations in history matching.

In Fig. 6.22, we show the objective function reduction for matching the WOR data and

GOR data. It can be seen that the objective function reduces more than 1 order. After

production data matching, all 7 wells have improvements in their water cut changes, in

terms of closeness to the observed water cut curves. In the upper layers, the biggest changes
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Figure 6.23: Objective function reduction in Bay Marchand field (Seismic impedance change

data matching only)

happen around the zones between aquifer and the wells, where some obvious reduction in

permeability can be observed, postponing water breakthrough in wells. In bottom layer, the

changes are less systematic.

The production data matched model was used as the start point for matching seismic

impedance change data. Seismic impedance changes in the aquifer were not included in

history matching. The objective function behavior is shown in Fig. 6.23. Although some of

the seismic data mismatch reductions resulted in further improvements in the matching of

water cut at some wells, the match in the water cut got worse at others. The final level of

the seismic objective function is not unreasonable considering the magnitude of the noise in

the data and the quality of the initial match.
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Chapter 7

HISTORY MATCHING OF FACIES

DISTRIBUTIONS

7.1 Background

Major improvements in the application of the truncated Gaussian method for lithofacies

simulations based on indicators were developed mostly by scholars at the Ecole des Mines de

Paris center of geostatistics. By analyzing the limitations and the potential of the truncated

Gaussian method, Galli et al. (1994) found a way to apply this method to a 3-D problem with

vertical non-stationarity in the proportions of lithofacies. They showed that this method

preserved the consistency of the indicator variograms and cross variograms, and allowed

more complex neighbor relations than the standard truncated Gaussian model. In the same

period, Le Loc’h et al. (1994) showed the flexibility of the truncated plurigaussian method

by truncating two Gaussian functions. They pointed out that even if the two underlying

Gaussian functions are independent with each other, the resulting facies maps obtained by

truncation are correlated in vertical and horizontal directions. The correlation depends on

the construction of thresholds of lithotypes. Using uncorrelated Gaussian functions they

found that complex theoretical indicator variograms can be produced in combining various

anisotropies by choosing different Gaussian functions. They suggested that the choice of a

truncation method to the Gaussian functions should be as simple as possible to have easier

control over the problem.

Later, Le Loc’h and Galli (1997) presented an insight to implementing the algorithm

both for practical structural analysis and conditional simulations. In demonstrating the

influence of the thresholds chosen for truncation, the partition of facies was accomplished

using rectangles. But even with this relatively simple thresholding method, it is not at
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all straightforward to choose appropriate thresholds. The difficulty in estimating model

parameters that will result in the desired facies distributions has restricted the practical

application of this method. An example of a truncated plurigaussian simulation conditional

to facies data at well locations was presented with a very slow convergence. This problem was

attributed to the instability of the Gaussian covariance matrix. Lantuéjoul (2002) discusses

the problem of conditioning truncated plurigaussian models to facies observations extensively.

Assuming known threshold parameters, the truncated plurigaussian simulation scheme was

able to simulate the Gaussian random fields to match given lithofacies observations. As his

simulation problem was small, the Markov chain Monte Carlo sampling method was applied

to evolve Gaussian random fields. While, once again, the great potential of the truncated

plurigaussian method in simulating lithofacies distribution was revealed, two major problems

were left unsolved and seem to be limiting the application of this method beyond France.

First is the difficulty in estimation of geostatistical parameters, i.e. the geostatiscal quantities

such as the range, the variance, the covariance type (Gaussian, Exponential, Spherical, etc.)

and the thresholds for discrimination of facies. Second, the application of the truncated

plurigausian method in practical conditional simulation problems requires more efficient

methods of sampling to deal with reservoir history matching problems.

Conditional simulation of reservoir facies distributions is of great interest of reservoir

engineers. Bi et al. (2000) and Zhang et al. (2002) approached the problem of simulating

a channel sand by simulating the location of the centerline, the width, and thickness of the

channel all along the channel length. In both cases, the Levenberg-Marquardt or Gauss-

Newton methods were used for the history matching and the chain rule was used to compute

the derivative of the production data mismatch to the values of channel width for example.

They were able to do this because many of the intermediate matrices in the computation

of the sensitivities were sparse, and because the number of sensitivity coefficients to be

computed was relatively small.

In the article by Rahon et al. (1996), they considered two problems in simulating locations

of lithofacies conditional to well pressure data. In the first, they attempt to estimate the

permeability of each facies whose locations have been fixed. In the second problem, they

altered the size of facies whose permeabilities have been fixed. The gradient calculation

relating to lithofacies has been successfully implemented in an implicit single-phase fluid

flow model. Rahon et al. (1997) applied similar idea in the problem of simulating channel

sand locations. This paper parameterizes a channel by triangularization of surface with the

nodes of the triangles representing the parameters. The centerline of the channel is assumed

known and fixed and the permeability and porosity in both the channel and non-channel
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facies are assumed to be known. Sensitivities of the well pressure observations with respect

to the parameters of the nodes were computed to adjust the size of the channel. Although the

idea of using the gradient method to adjust parameters deciding the size of lithofacies was

valuable, their work was limited to the kind of problems with known locations of lithofacies.

Landa et al. (2000) integrated well test, logging, and geological data to obtain a reservoir

description using the gradient method (Anterion et al., 1989). They calculate the sensitivity

matrix for permeability by solving the system n times (where n is the number of parameters

or gridblocks) and assume that permeability and porosity are perfectly correlated. Their

method is computationally unaffordable for problems with large number of model variables.

The method of truncated plurigaussian simulation is very flexible in simulating distribution

of lithofacies, for instance, the location, width and sinuosity of multi-channels. However, to

obtain a satisfactory resolution in the lithofacies map, the Gaussian random fields used need

to be large and the method of computing gradients has to be more efficient.

7.2 The Geostatistical Model

We consider a truncated bi-Gaussian field for which two independent Gaussian random fields,

y1 and y2 are used to generate a facies map.

7.2.1 Generating Thresholds

The choice of the truncation method for the Gaussian variables is important in applying

truncated Gaussian simulation in automatic history matching to generate reservoir models

satisfying geological requirements. Our intention is to use three or more intersecting lines

as thresholds. In this report, I will focus on introducing truncated Gaussian simulation

using three threshold lines. Three randomly generated lines intersecting each other without

all passing through the same point divide the plane into 7 regions. A facies type can be

attributed to each region, so up to 7 different kinds of facies can be included in the same

plane with appropriate relative percentage. This number of facies is generally enough for

geology maps in petroleum reservoir study, but if not, another line could be added. The

three lines are thresholds for different rock properties. Given an angle θ and a distance r, a

threshold line could be described by the following equation:

y = tan(θ − π

2
)(x− r

cos θ
), (7.1)

i.e., the threshold line is perpendicular to the line passing through the origin with the slope

θ and intersects the line at a distance r.
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{Z11, Z12, . . . , Z1Ng} Independent normal deviates with mean 0 and variance 1.

{Z21, Z22, . . . , Z2Ng} Independent normal deviates with mean 0 and variance 1.

{a11, a12, θc1} Ranges of covariance and principal direction of anisotropy.

{a21, a22, θc2} Ranges of covariance and principal direction of anisotropy.

{(r1, θ1), . . . , (rNl
, θNl

)} Locations of truncation lines.

Table 7.1: Continuous geostatistical variables.

Fig. 7.1 is an example illustrating the truncation scheme of intersecting threshold lines.

The Gaussian random field y1 has Gaussian type covariance and y2 has exponential type

covariance. The coordinates of the threshold map (Fig. 7.1(c)) are y1 and y2 respectively.

Three kinds of lithotypes, A, B, and C are assigned to the seven regions in the threshold

map. Facies type at any gridblock in the field is decided by taking the y1 and y2 value of

that gridblock to the threshold map. For instance, the gridblock (20, 40) has low values for

both its y1 and y2. (They both are in areas with dark shade.) So it corresponds to the area

in threshold map assigned facies A. We can tell from the facies map (Fig. 7.1(d)) that the

gridblock (20, 40) was assigned facies A. Calculation of the Gaussian fields y1 and y2 will be

discussed in the later section.

7.2.2 Continuous Variables

We begin by considering the continuous variables. Facies are defined by the truncation of

two continuous random fields. At the basic level, the variables on the grid are independent

normal deviates with mean 0 and variance 1. These independent deviates must be converted

to correlated random fields for truncation. The parameters of the two covariance functions

(such as the ranges of the covariances for the two fields, the principal directions) are variables

in this problem.

If we partition the truncation map based on truncation lines, then the locations of the

lines are also continuous variables. We let the number of lines be denoted by Nl.

The variables Z1 and Z2 are assumed to be vectors of standard normal deviates, so their

probability distributions are

P (Z1) ∝ exp
(
−1

2
ZT

1 Z1

)
(7.2)

P (Z2) ∝ exp
(
−1

2
ZT

2 Z2

)
. (7.3)

The prior pdfs for the ranges of the two variograms in the principle directions (a11, a12, a21, a22)

might realistically be modelled as a χ-square distributions with 0 means and fairly large
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Figure 7.1: Simulation of lithofacies distribution in the field by truncation of random Gaus-

sian fields y1 and y2 using intersecting line thresholds.

variances. Even before a training image is given, a positive prior estimate of the spatial cor-

relation ranges can be made with reasonable estimation error. Although the prior estimates

of the ranges are always positive, we may want to truncate the distributions so that only

positive ranges are allowed. The same is true of θc1 and θc2, the orientations for the spatial

correlations. Although the prior distributions are uniform on the interval (0, π), when the
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training image is given, the initial estimations are Gaussian with mean at the best estimate

of the angle.

The random variable representing distance of the truncation lines from the origin is

assumed to be distributed as N(0, 1), so that the unconditional threshold lines are close to

the origin. It seems plausible to assume that the prior distributions for the orientation of

the partitioning lines θ1, . . . , θNl
should be uniform on the interval (0, π). In this case, the

probability density is a constant and can be ignored (or, more accurately, absorbed into the

overall constant).

The list of continuous model parameters in truncated plurigaussian problem is shown in

Table 7.1. We can then define mcG to be the vector of continuous variables whose prior distri-

bution is Gaussian and mcU to be the vector of continuous variables whose prior distribution

is uniform, or

mcG =



Z1

Z2

a11

a12

a21

a22

r1

...

rNl


and mcU =


θ1

θ2

...

θNl

 . (7.4)

7.2.3 Discrete Variables

There will also be a few parameters or variables that are uncertain but not continuous (and

hence not differentiable). The number of partitioning lines is clearly discrete. The covariance

model (that is, Gaussian, exponential, spherical, Whittles, etc.) to be used for each of the

random fields is not continuous or even numerical. Finally, each region of the truncation

map must be assigned a facies. Like the covariance models, the facies do not take continuous

values so this is also not continuous or numerical. The group of discontinuous variables is

summarized in Table 7.2.

The existence of discrete variables in this problem makes it harder to apply gradient

methods in optimization of model parameters. In this stage of our research, the number of

partition lines (Nl) is fixed as 3. The covariance models for the Gaussian fields are assumed

to be a linear combination of the Gaussian and the exponential type, for which both the

Gaussian and the exponential covariance models for a Gaussian field have the same ranges
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Nl The number of partitioning lines.

{m1, m2} Covariance models for fields Y1 and Y2.

{F1, F2, . . . , FNr} Facies assignment for each partitioning region.

Table 7.2: Discontinuous geostatistical variables.

and anisotropy angle. By adding a continuous variable as the weighting factor between the

two covariance types, the covariance type becomes differentiable. As for the probability for

assigning a particular facies type to one of the partitioning regions in the threshold map:

in the absence of any other information it seems reasonable to assign equal probability to

each facies type. As soon as any information on relative abundance of facies is available, the

probabilities will not be equal.

7.2.4 Prior Probability Density

The prior probability for facies distribution map F on a grid is denoted as P (F ). We can

write

P (F ) = P (F |mcG, mcU , md)P (mcG, mcU , md)

∝ P (mcG, mcU , md)

= P (mcG)P (mcU)P (md)

∝ P (mcG)P (md)

(7.5)

The first term on the right, the conditional probability for the facies map realization F given

values of all the model variables, can be ignored as the relationship is deterministic once

the variables are given. We have also assumed independence of the variables in the prior

distributions, which explains the third line of Eq. 7.5. The fourth line is a result of the

uniform distribution for some of the variables.

The prior joint probability density for the continuous variables can be written in a com-

pact form as

P (mcG) ∝ exp
(
−1

2
mT

cGC−1
M mcG

)
, (7.6)

where CM is the diagonal matrix of variances. For Z1 and Z2 the variances are all equal to

1.
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7.2.5 The Posterior Probability Density

Our goal is to generate samples from the posterior distribution, i.e., the distribution of F

conditioned to observations, dobs. To do this, we need to be able to characterize the likelihood

of the model variables m given the observations, and the prior probability of model variables.

Bayes’ theorem tells us that

P (mcG, mcU , md|dobs) ∝ P (dobs|mcG, mcU , md)P (mcG, mcU , md). (7.7)

The first term on the right, the likelihood of the model, can be approximated by the

following Gaussian expression,

P (dobs|mcG, mcU , md) ≈ A exp
[
−1

2
(F − Fobs)

T C−1
D (F − Fobs)

]
(7.8)

where the data or measurement error covariance matrix CD simply reflects the possibility of

error in the identification or modeling of the observed facies. Of course, the vector F − Fobs

must be defined in a reasonable way. Facies have no intrinsic numerical value and even if they

were assigned numerical values for computation, it might not be reasonable to assume that

the difference between Facies 1 and Facies 3 is larger than the difference between Facies 1 and

Facies 2. It seems reasonable, for the purpose of conditional simulation and estimation, to

assume that the facies are either the same (in which case F −Fobs = 0) or they are different

(in which case F − Fobs = 1).

7.3 Minimization

At this stage, we assume homogeneity within facies, i.e. both the permeability and the

porosity are constant for the same kind of facies type. However, the property fields are

discontinuous at the facies boundaries. Define the difference between the facies type from

optimization and the “true” facies type as:

fi =

0 if Fi = Fobs,i

1 if Fi 6= Fobs,i

where i indicates the ith gridblock. The general objective function for minimization is

O(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs) +

1

2
(m−mpr)

T C−1
M (m−mpr). (7.9)
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When the objective is to minimize the difference between a facies realization and a training

image, the objective function takes the form:

OF (m) =
1

2
(F (m)− Fobs)

T C−1
D (F (m)− Fobs) +

1

2
(m−mpr)

T C−1
M (m−mpr)

=
1

2
f(m)T C−1

DF f(m) +
1

2
(m−mpr)

T C−1
M (m−mpr), (7.10)

where f is a vector of fi for i = 1, . . . , Ng, if there were facies observation in each gridblock.

Otherwise, when the number of facies observations Nf is less than Ng, the dimensions of

f is Nf × 1. CDF is the covariance matrix of the facies observation. Assume the facies in

each gridblock are independently observed with an unbiased Gaussian error N(0, σ2
F ), the

CDF matrix is equivalent to an identity matrix multiplied by σ2
F . The variance of the error

in facies observation approaches to zero, therefore the weighting of the model mismatch is

much smaller than the data mismatch, and can be ignored from the objective function. We

would like the objective function to be as small as possible since in that case we should

have a match between the observations and the model realization. The problem is that this

function is not differentiable so we cannot use gradient-based methods to find a minimum.

One solution is to redefine the function f so that it is differentiable (only for the purpose of

computing the minimum). We do this by introducing an artificial transition region between

facies.

7.4 Exploration on Optimization of Threshold Lines

The gradient of the facies mismatch to model parameters has shown that the objective func-

tion for facies mismatch is far more sensitive to the parameters deciding threshold lines

than to those deciding random Gaussian fields, which indicates that adjustment of θs and

rs mostly controls the optimization process. So here I take the first step towards a complete

optimization of all parameters – fix the two Gaussian random fields as the “true” and leave

the threshold parameters as the only set of variables to be optimized. Another purpose of

leaving the Gaussian random field fixed is to be able to test the validity of the gradient of the

objective function about threshold parameters. By fixing the Gaussian random fields, the

optimization problem becomes fairly small (with only 6 variable parameters) and it is afford-

able to calculate the inverse of the Hessian directly, such that the Levenberg-Marquardt(LM)

algorithm could be used instead of LBFGS.
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Figure 7.2: The reduction of the objective function with LM iterations.

7.4.1 Case 1: using true Z1 and Z2

The optimization problem was applied on a fine grid field of 128 × 128. Prior experience

with this research has proven that coarse grid such as 10× 10 would make the optimization

rather tough. The objective function is the squared difference between the facies realization

map and a given training image with facies observations at each grid. A set of threshold

lines was generated randomly as a prior model, which was a pure guess and contains no

prior knowledge about the truth. By truncating the “true” Gaussian random fields with

this prior threshold model, the objective function and a search direction were calculated.

After 10 steps of LM iterations, the objective function was reduced from the prior 7383 to

68. The total number of gridblocks is 128× 128 = 16384, and it is reasonable to accept the

convergence when less than 1% of the total gridblocks have facies type different from the

truth.

The reduction of the objective function with LM iterations is shown in Fig. 7.2. In

Fig. 7.3, the threshold model after the tenth step and its corresponding facies distribution

were compared with the truth case. The data mismatch of 68 is small enough that the

difference between the calculated and the truth could be hardly recognized. Three set of

threshold lines, the random prior, the posterior and the true are put together in Fig. 7.4. A

slight mismatch of the posterior threshold and the truth could be observed and the lines in

the posterior model have been shifted far from their prior location.

7.4.2 Case 2: unknown true Z1 and Z2

Given a map of lithofacies distribution, either from a geologist’s experience, or from an out-

crop, a set of geosatistical parameters which would generate a lithofacies realization with

similar features and appearance can be estimated by the LBFGS optimization iterations.

Unfortunately, a single estimate of the parameters is unlikely to provide a reasonable char-
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(a) The true threshold map. (b) The true facies field.

(c) Calculated threshold map. (d) Calculated facies field.

Figure 7.3: The comparison of an optimized estimation after 10 LM iterations with the

“true” threshold map and facies field.
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(a) The prior threshold model. (b) Comparison between calculated and
the truth.

Figure 7.4: Comparison of the prior, the posterior and the true threshold map. Solid lines

are stochastic model estimations and dashed lines are the truth.

acterization of the uncertainty. Simple reasoning, for example, tells us that there are some

symmetries to the threshold map. Because the variability in the geostatistical parameters

is expected to be large (and non-Gaussian), we will characterize the pdf of the threshold

line parameters using the method of randomized maximum likelihood. In this method, we

generate unconditional realizations of model parameters Z1, Z2, R, Θ, then adjust the model

parameters to minimize the difference between the true (or training) facies map and the

predicted facies map from the current model. If we do this a large number of times, we can

expect to develop an empirical estimate of the pdf for threshold line parameters conditional

to the training image.

The objective function for this problem contains both the squared data mismatch term

and the squared model mismatch term, as shown in Eq. 7.11. The model mismatch part was

used to prevent the singularity of the inverse problem. As the mean or any prior knowledge

of the model parameters are unavailable, the initial guess of model parameters was used as

a constraint, consistent with application of Randomized Maximum Likelihood,

O(mk) =
1

2
(mk −mpr)

T C−1
M (mk −mpr) +

1

2
(F (mk)− Fobs)

T C−1
D (F (mk)− Fobs). (7.11)

There is little information of a reasonable magnitude of the error in a facies observation,

especially for a map created by the experience of a geologist. Therefore, we simply assumed

the covariance matrix of the facies observations CD = 1 and seemed to obtain reasonable

answers.

As an example synthetic problem, the reservoir model is two dimensional and hetero-

geneous, with the size 300 ft ×300 ft. It is discretized into 128 × 128 gridblocks. Three
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Figure 7.5: The initial facies map (left) and the gradient of the objective function with

respect to the field evaluated at the initial map (right).

threshold lines are used for truncation and three lithotypes were assigned to the threshold

map. Both y1 and y2 have isotropic Gaussian type covariance with same range of 90 ft.

The model variables were defined on an augmented grid whose dimensions were 192× 192.

Because two of these grids are need for truncation there are approximately 73,000 variables

and 16,000 data in the problem.

Three threshold lines were used for truncation and three lithotypes were assigned to the

threshold map. Both Y1 and Y2 have isotropic Gaussian type covariance with range of 90 ft.

Fig. 7.5 shows the facies distribution from the initial guess of model parameters. The initial

facies mismatch is 12525, i.e. 76% of the gridblocks have wrong facies types compared to

the training image [Fig. 7.8 (left)].

This problem is far too large for Levenberg-Marquardt, so the limited memory version of

the BFGS (LBFGS) algorithm (Nocedal, 1980) was used for the minimization of the objective

function because it requires storage of only a small set of vectors instead of the whole inverse

Hessian matrix. The inverse Hessian is iteratively updated based on computations of the

gradient, for which we used an adjoint method with automatic code generation (Corliss et al.,

2001).

The LBFGS algorithm is one of the most popular quasi-Newton methods. It is based

on generating an approximation of the inverse of Hessian matrix from computations of the

gradient. For problems with large number of model parameters, like the problem this section

is dealing with, it becomes impossible to even store the Hessian matrix. The LBFGS algo-

rithm stores only a set of vectors instead of the whole Hessian matrix, and produces search

direction with great convergence efficiency.

Let gk be the kth step gradient calculated from the adjoint method, L be the maximum
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number of vectors to be stored, which has to be fixed as constant, and k be the current

iteration number, the Nocedal LBFGS algorithm is as following.

1. If k ≤ L, set incr = 0 and bound = k; else set incr = k − L and bound = L

2. qbound = gk

3. For i = bound− 1, . . . , 0 
j = i + incr

αi = ρjs
T
j qi+1

qi = qi+1 − αiyj

r0 = H̃−1
0 × q0

4. For i = 0, 1, . . . , bound− 1 
j = i + incr

βj = ρjy
T
j ri

ri+1 = ri + sj(αi − βi)

5. dk = −rbound

where

sj = mj+1 −mj

yj = gj+1 − gj

ρj = 1/(yT
j sj)

dk is the search direction given by −H̃−1
k × gk if use Newton’s method.

Fig. 7.5 (right) shows the gradient of the objective function with respect to Y1. The gradi-

ent of the objective function to Y1 clearly reflects the regions of high sensitivity. Comparing

the right and left sub-figures in Fig. 7.5, we may conclude that the mismatch function is most

sensitive to changes in the values of the random variables that are near facies boundaries.

The width of the region of sensitivity depends on the width of the transition region and its

choice affects the rate of convergence.

Fig. 7.6(a) is the output gradient of the objective function with respect to the Gaussian

random field Z1. Because the scheme of list convolution was used, the Gaussian random

fields Z1 and Z2 both have greater dimensions than the true gridblocks. The gradient of

objective function with respect to Z1 can also be calculated by convolution of the Gaussian
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template with the gradient of objective function to Y1. So the field in Fig. 7.5(right) was

convolved with the Gaussian template and the result is plotted in Fig. 7.6(b). As expected,

we found that Fig. 7.6(a) and Fig. 7.6(b) have very similar values. The difference of the

two plots is in the frame areas, which are largely due to the numerical error brought by the

difference in the list convolution routine and its adjoint routine. The plot with sensitivity

values in the frame area is more reasonable.

(a) Gradient of objective function to Z1

field from adjoint code.
(b) Gradient of objective function to Z1

field from chain rule.

Figure 7.6: The resulting gradient field of Z1 from convolution of the Gaussian template

with the gradient of objective function to Y1 field.

In applying the LBFGS method, we found that the method would frequently become

stuck at a fairly large value of the objective function, and that the line search implemen-

tation was not trivial. After experimenting with several methods, we performed a simple

investigation of the behavior of the objective function in the descent direction for the first it-

eration. The reduction of the objective function in first search direction is shown in Fig. 7.4.2.

The discontinuous reduction in the objective function curve is due to a switching of litho-

types in different regions of the threshold map, when the modification on the threshold line

parameters caused the lines to intersect in a different way.

Finally the training image is shown together with the final facies map in Fig. 7.8. The

facies in 95.6% of the gridblocks in the final result matched the facies in the training image.

We repeated the minimization procedure 200 times; each time we started with uncon-

ditional realizations of the parameters describing locations of the threshold lines and un-

conditional realizations of the random variables on the grid. The Randomized Maximum
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Figure 7.7: Shape of initial objective function in first search direction.

Figure 7.8: Comparison of the facies map generated from the minimization of the objective

function (right) with the training image (left).

Likelihood (RML) method was used for the sampling, as it seems to do a relatively good job

of sampling for this type of problem (see Liu and Oliver, 2003). In approximately half of

the cases the resulting value of the objective function seemed satisfactory (less than 2000).

Fig. 7.9 summarizes the distribution of realizations of the orientations of the first two thresh-

old lines.

Although the orientation of the threshold lines were sampled randomly from a uniform

distribution, the facies were assigned in a non-random and non-uniform manner. As a result,

it was necessary to arrange the threshold lines in the order θ1 < θ2 < θ3. Once this is done,

the distributions of orientations are no longer uniform. It would be unlikely, for example, for

the smallest of the three angles (θ1) to be close to π, and this is seen in Fig. 7.9. From the two

plots, it is not apparent that the estimate of the posterior distribution for θ1 or θ2 (indicated

by the black squares) is significantly different from the prior distribution (indicated by the

black triangles). If there had been rotational symmetry to the threshold plots, we would

have expected the orientations to cluster along lines in cross-plots of variables. Cross-plots of
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Figure 7.9: Comparison of the estimated pdf (squares) for θ1 (left) and θ2 (right) to the prior

pdf (triangles). The width of the gray bars indicates the variability due to limited sample

size of 109 ordered sets of 3 orientations from a uniform distribution. 10% are higher and

10% are lower.

the threshold line parameters from the 109 accepted conditional samples failed, however, to

show any obvious patterns. In order to honor the proportions of facies correctly, there must

be some fairly strong constraints on relationships among the threshold line parameters, but

they are not obvious from the conditional realizations. 2500 conditional threshold models

are generated in addition to the 109 models, and the cross-plots are presented in Fig. 7.10.

Again, no obvious patterns are revealed. It would be easy, however, to use the realizations

generated in this procedure in a Monte Carlo method, in which case the true sampling space

of model parameters does not have to be known.

7.5 History Matching to Production Data

Practically the hard data of facies observations in a formation layer are only available at well

bores with coring operations. The training image from geologists provides expected facies

distribution pattern and features based on the sedimentary environment and the formation

outcrops, but does not carry any local accuracy. In the previous study, PDFs of the geosta-

tistical parameters, such as the ones deciding truncation schemes and the ones deciding the

covariance of the Gaussian fields, have been estimated from a given training image. The geo-

statistical parameters are then proposed from the PDFs in a Bayesian scheme for simulation

of facies conditional to logs and/or production data.

When the PDFs of the geostatistical parameters are known, realizations of the facies

distribution map can be generated by minimizing the objective function with respect to the
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Figure 7.10: Cross-plots of the conditional threshold line models.
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random field Z1 and Z2. The objective function in this case is:

O(m) =
1

2
[P (m)− Pobs]

T C−1
P [P (m)− Pobs] +

1

2
[F (m)− Fobs]

T C−1
F [F (m)− Fobs]

+
1

2
(m−mpr)

T C−1
M (m−mpr)

=
1

2
[d(m)− dobs]

T C−1
D [d(m)− dobs] +

1

2
(m−mpr)

T C−1
M (m−mpr), (7.12)

where the prior model mpr = {Z1,pr, Z2,pr} is composed of random deviates with mean 0

and variance 1, so the prior model covariance matrix CM is an identity matrix. Pobs is the

observed production data, such as the bottom whole pressures, the WORs, the GORs, and

the production rates. P (m) is the simulated production data. Fobs is the facies observation

at a few cored locations. Both CP and CF are diagonal covariance matrices of the data

observations for independent data errors, and its diagonal elements are the variances of

measurement errors. The facies observations are very accurate so its variance is much smaller

than that of production data. The mismatch to the hard data dominates the matching before

all the facies observations are matched, so that the facies type at well locations are forced

to honor the facies observations. The production data and the hard data are combined and

denoted as dobs.

7.5.1 Gradient derivation

We assume the variation of rock properties within a facies is negligible in comparison with

that between different facies types. So the porosity and the permeability values at each

gridblock is decided by the facies type. The gradient of the objective function O(m) with

respect to the model parameters is:

g = ∇mO(m)

= GP (m)T C−1
P [P (m)− Pobs] + GF (m)T C−1

F [F (m)− Fobs] + C−1
M (m−mpr)

= gP + gF + gm

= ∇mOd(m) +∇mOm(m). (7.13)

When the geostatistical model has been decided, generating a facies realization that matches

the production data and logging data is to optimize the random fields Z1 and Z2.

The gradient of the data mismatch with respect to Z1 and Z2 can be derived by the chain

rule as:
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∇Z1Od(m) = ∇Z1 [OP (m) + OF (m)]

= L1 · [∇Y1K(m) · ∇KOP (m) +∇Y1φ(m) · ∇φOP (m) +∇Y1OF (m)].(7.14)

∇Z2Od(m) = ∇Z2 [OP (m) + OF (m)]

= L2 · [∇Y2K(m) · ∇KOP (m) +∇Y2φ(m) · ∇φOP (m)

+∇Y2OF (m)], (7.15)

where L1 and L2 are square roots of the covariance matrices CY 1 and CY 2. In practice,

because the dimensions of the model are so large, we use convolution of a single row as

described by Oliver (1995). K(m) is the permeability field and φ(m) is the porosity field. The

gradients of the objective function with respect to the permeability and the porosity fields,

∇KOP (m) and ∇φOP (m), were obtained from the adjoint method for general automatic

history matching of reservoir property fields (see Li et al., 2003b).

As the permeability field K(m) is a vector of Ng elements, where Ng is the number of

gridblocks, ∇Y1K
T and ∇Y2K

T are both Ng ×Ng matrices. Sensitivity of K to Y1 at the ith

gridblock, Y1,i, is a vector of all zeros but the ith element. Eq. 7.16 shows the gradient of K

about Y1,1:

∇Y1,1K =


∂K1

∂Y1,1

0
...

0

 , (7.16)

which indicates that a perturbation to the Gaussian random field Y1 at the gridblock 1 only

impacts the permeability at the gridblock 1.

So the gradients of the property fields with respect to the Gaussian fields, ∇Yj
K(m) and

∇Yj
φ(m) for j = 1, 2, are diagonal matrices:

∇Yj
KT =


∂K1

∂Yj,1
0 · · · 0

0 ∂K2

∂Yj,2
· · · 0

...
. . .

0 0 · · · ∂KNg

∂Yj,Ng

 ,

∇Yj
φT =


∂φ1

∂Yj,1
0 · · · 0

0 ∂φ2

∂Yj,2
· · · 0

...
. . .

0 0 · · · ∂φNg

∂Yj,Ng

 .
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The diagonal elements are computed by chain rule:

∂Ki(m)

∂Y1,i

=
dKi

ddl

∂dl

∂Y1,i

,

∂φi(m)

∂Y1,i

=
dφi

ddl

∂dl

∂Y1,i

,

∂Ki(m)

∂Y2,i

=
dKi

ddl

∂dl

∂Y2,i

,

∂φi(m)

∂Y2,i

=
dφi

ddl

∂dl

∂Y2,i

,

for i = 1, . . . , Ng. dl is the distance of (Y1,i, Y2,i) to the closest threshold line.

The property fields K and φ are regarded homogenous within a facies region, but the

values are discontinuous across the facies boundaries. To compute the gradient of the prop-

erty fields with respect to the Gaussian fields, the property fields have to be differentiable.

As the facies observations are only available at a few cored locations, it is not possible to tell

whether the facies type corresponds to (Y1,i, Y2,i) is correct. Therefore the transition zone of

the permeability and porosity values is made in both sides along the closest threshold line

to point (Y1,i, Y2,i). If the property fields in the transition zone were defined by the square

root of the distance to the threshold line as:

K(dl) =

K1+K2

2
+ Sign(dl)

K2−K1

2

√
|dl|
ε

for |dl| ≤ ε

0 for |dl| > ε,
(7.17)

and K1 and K2 are permeability values assigned to each facies, then the gradient dKi

ddl
goes

to infinite when the distance to the threshold line approaches to zero. Therefore linear

interpolation was chosen for the transition zone of the property fields.

Let the width of the transition zone on each side of the threshold line be ε, the perme-

ability along the direction perpendicular to a threshold line is:

K(dl) =

K1 − 1
2
(K1 −K2)(1− |dl|

ε
) for |dl| ≤ ε

0 for |dl| > ε,
(7.18)

where K1 is the assigned facies permeability at the same side of the threshold line with

(Y1,i, Y2,i), and K2 is the assigned permeability on the other side. ε is the absolute distance

to the threshold line. In Fig. 7.11, the permeability at point B can be computed by Eq. 7.18,

and KA should be computed by:

KA = K2 −
1

2
(K2 −K1)(1−

|dl,a|
ε

), (7.19)
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Figure 7.11: The gradient of the permeability is derived from this linear interpolation model.

K1 and K2 are permeability values assigned to two adjacent regions in the threshold map.

Point O is the cross-section with the threshold line, which is also the middle point of the

transition zone in this 1-D plot.

as A is on the same side with K2.

The gradient dKi

d|dl|
in the linear interpolation case is:

dKi

d|dl|
=

K1−K2

2ε
for |dl| ≤ ε

0 for |dl| > ε.
(7.20)

Substituting Eq. 7.20 into Eq. 7.5.1, the gradient of the permeability at the ith grid with

respect to Y1 at the ith grid is:

∂Ki(m)

∂Y1,i

=
dKi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= Sign(dl)
K1 −K2

2ε
sin(θl −

π

2
). (7.21)

∂φi(m)

∂Y1,i

=
dφi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= Sign(dl)
φ1 − φ2

2ε
sin(θl −

π

2
),

∂Ki(m)

∂Y2,i

=
dKi

d|dl|
d|dl|
ddl

∂dl

∂Y1,2

= −Sign(dl)
K1 −K2

2ε
cos(θl −

π

2
),

∂φi(m)

∂Y1,i

=
dφi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= −Sign(dl)
φ1 − φ2

2ε
cos(θl −

π

2
).
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The third term of ∇Z1Od(m) in the Eq. 7.14 is the gradient of facies mismatch about

Z1. The computation of ∇Y1OF (m) is similar with the case where a training image is given.

OF is the squared difference between the simulated facies and facies observations. When the

simulated and the observed facies are the same type, the difference factor fi = 0, otherwise

fi = 1. As the gradient ∇Y1OF (m) = GF,Y1(m)T C−1
F f , the key is to compute the sensitivity

of the facies mismatch to Y1: GF,Y1 , which is an NF × Ng sparse matrix with maximum

one non-zero element in each row. The non-zero elements are the sensitivities of the facies

difference f at the facies observation locations with respect to Y1 at the corresponding grid.

Because the logical process of deciding the values of dfi

dY1,i
is beyond the description capacity

of equations, the following pseudo code is provided.
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DO l = 1, Nl

d(l) =
tan(θl − π

2
)Y1,i − Y2,i − tan(θl − π

2
) rl

cos θl√
1 + tan2(θl − π

2
)

= sin(θl −
π

2
)Y1,i − cos(θl −

π

2
)Y2,i + rl

END DO.

dl = min(d)

IF Fi = Fobs,i THEN
dfi

dY1,i
= 0

ELSE

IF |dl| > ε THEN
dfi

dY1,i
= 0

ELSE

IF (Fab,i = Fobs,i) THEN

dfi

dY1,i

=
dl

|dl|
1

2
√

ε|dl|
sin(θl −

π

2
)

ELSE
dfi

dY1,i
= 0

END IF

END IF

END IF

Fab,i is the facies type on the other side of the closest threshold line. When the

facies at grid i decided by (Y1,i, Y2,i) does not match the facies observation at that

location, but the other side of the threshold line has the correct facies type, i.e.

Fab,i = Fobs,i, there exists a transition zone on the side of the threshold line that is

closer to (Y1,i, Y2,i).

The non-zero terms in ∇Y1OF (m) = GF,Y1(m)T C−1
F f is:

∂OF (m)

∂Y1,i

=
dl

|dl|
1

2σ2
F ε

sin(θl −
π

2
). (7.22)

Similarly, the gradient of the facies mismatch with respect to Y2: ∇Y2OF (m), is a very

sparse vector with a maximum of NF non-zero elements. The non-zero elements are computed

as:
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∂OF (m)

∂Y2,i

=
dl

|dl|
1

2σ2
F ε

sin(θl −
π

2
). (7.23)

7.5.2 Generate Initial Model

The initial model for history matching of production data needs to honor the facies ob-

servations, otherwise the production data mismatch is enormous and difficult to minimize.

Knowing the geological and geostatistical model, the initial model set Z1 and Z2 can be

generated in the following procedures.

1. Generate two multivariate Gaussian deviates Z1 and Z2 from N(0, I).

2. Simulate the facies map from Z1 and Z2, and check whether the simulated facies at

observation locations match all the facies observations.

3. For simulated facies that do not honor the facies observations, generate new random

variables in patches of appropriate size (proportional to the correlation ranges of the

Gaussian fields) and replace the patches to the variables centered at the observation

locations that do not match.

4. Run the simulation again and check the matching of the facies observation. If there is

still facies mismatch, repeat step 3. If not, output the random fields Z1, Z2 as a set of

initial model.

Twelve initial models are generated and the initial facies maps are shown in Fig. 7.12.

As the assignment of facies to the seven regions in the threshold map is ad hoc and non-

differentiable at this stage, the true facies arrangement is assumed to be known as a part

of the geostatistical model. The history matching process then uses the true threshold map

to do the truncation. One potential problem with fixing the threshold map and the facies

assignment is that the grids with Gaussian random variables far from threshold lines may

be difficult to be modified to the correct facies. To make this point clear, the true threshold

map is shown in Fig. 7.13 with the pairs of Gaussian variables (Y1, Y2) at the observation

locations of the true facies map. The regions in the threshold map are assigned three types

of facies: F = 1, 2, or 3. Both the facies observations with facies F = 1 can be close to facies

2 and 3 in the true facies map. An initial map can be very possibly generated matching

the facies observations, but with the pairs of Gaussian variables in a different region of the

threshold map. For instance, if either of the two pairs of (Y1, Y2) giving facies 1 is in the

top region where Y2 has large positive value, the observation location will be difficult to be
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Figure 7.12: Twelve initial facies maps that honors the facies observations. The initial

models are then used for matching the production data, while preserving the correct facies

at observation locations.
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Figure 7.13: The true facies map and the true threshold map with the Gaussian variables

(Y1, Y2) at each facies observation of the true facies map.

adjusted to facies 2, as it is not likely for that point to move around the corner with the

facies 3 region and get down to the lower facies 1 region. When there are production data at

this facies observation location, it has small chance for convergence to the production data

because the facies types at the near well grids are hard to be corrected.

Therefore the initial model should honor the threshold regions at facies observation lo-

cations to make the convergence easier. The procedures for generating the initial models

that not only match the facies observations, but match the threshold regions of the facies

observations are shown as follows:

1. Generate two multivariate Gaussian deviates Z1 and Z2 from N(0, I).

2. Simulate the facies map from Z1 and Z2, then check whether the pairs of the Gaussian

variables (Y1, Y2) at observation locations are in the correct region.

3. For Gaussian pairs at observation locations that are not in the correct region in the

threshold map, generate new random variables in patches of appropriate size (propor-

tional to the correlation ranges of the Gaussian fields) and replace the patches to the

variables centered at the observation locations that do not match.

4. Run the simulation again and check the matching of the Gaussian variable region. If

there is mismatch, repeat step 3. If not, output the random fields Z1, Z2 as a set of

initial model.

7.5.3 Investigation on Convergence

The convergence of the objective function is largely dependent on the transition zone width

chosen for the optimization process. Each grid has two Gaussian variables (Y1, Y2), and it
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has non-zero gradients of the objective function with respect to both Gaussian variables only

if it is in the transition zone. When the transition zone is wide, grids that are far from the

boundaries of facies regions respond to the perturbation to model parameters Z1 and Z2.

The advantage of wide transition zone might be that the modifications to more grids can

be made in each iteration. However, as the transition is just made to compute the gradient

and the objective function does not consider the transition zone, gradients with a narrower

width should provide a more accurate adjustment direction. Fig. 7.14 shows the objective

function along the search direction in the first optimization iteration. The top row is with the

transition width of 0.2, and the bottom row is for a transition width of 1.0. The two figures

in the left column include points with non-zero facies mismatch at facies observations. As all

the five facies observations are at well locations, the facies mismatch caused great production

data mismatch from the wells. Therefore the objective function jumped by a factor of 20.

The reduction of the objective function before the facies alteration is small relative to its

magnitude when the facies at well locations are different from the observed facies. Therefore

the plot of objective function vs the number of iterations appears flat. To have a close look

at the trend of the objective function with respect to the step size along the search direction,

the flat parts are plotted out as shown in the right column of Fig. 7.14. Comparing the two

figures with the transition width of 0.2 and 1.0 respectively, the reduction of the objective

function is greater for the case with wider transition width.

When the proposed model does not satisfy both Wolfe conditions (see Kolda et al., 1998)

at the same time, a quadratic fit will be made to reduce the objective function by optimizing

the step size. The quadratic function is of the form:

q(α) = aα2 + bα + c, (7.24)

where the coefficients a, b, and c are computed as:

a =
O(mk + α̂kdk)−∇O(mk)α̂k −O(mk)

α̂2
k

,

b = ∇O(mk),

c = O(mk). (7.25)

The step size α̂k is computed from the Newton-Raphson iteration right before the quadratic

fit. dk is the search direction along which we try to find a minimum of the objective function.

mk is the current model from which the search direction is computed. O(mk) is the objective

function at the current model mk. ∇O(mk) is the gradient of the objective function about

model parameters at mk. Minimizing q(α) gives

αk = − ∇O(mk)α̂
2
k

2[O(α̂kdk)−∇O(mk)α̂k −O(mk)]
, (7.26)
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Figure 7.14: All the four figures are the objective function along the first search direction.

The transition zone width in the first row is 0.2, in the second row is 1.0. The figures on the

right column are amplifications of the flat region in the figures on the left column.
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Figure 7.15: A schematic plot of the quadratic fit to an objective function curve with the

typical shape for this minimization problem. The quadratic fit gives a higher objective

function value than that from the Newton-Raphson iteration.

Both curves of the objective function with different transition zone width are nearly

linear before the abrupt jump. Fig. 7.15 is a schematic plot showing the typical shape of the

objective function along the search direction for this type of minimization problem. Point A

represents the starting model mk, and B is the temporary model by Newton-Raphson search.

Although the objective function has been reduced from point A to point B, the change in the

model parameters might not be large enough to satisfy the second Wolfe condition. Therefore

a quadratic fit is made through point A and B. The step size corresponding to point C is at

the minimum point in the quadratic fit function q(α), but gives a higher objective function

than both point A and B. In this case, the new model at point C is not acceptable. Instead

the step size from the quadratic fit is repeatedly cut by a factor of 10 until the objective

function from the proposed model become less than O(mk).

The process of optimization is fairly complicated. A flow chart is provided to give a

better illustration of the structure of the code developed along this study.

7.6 Constrained Optimization

There are two types of data available in the history matching problem for geologic facies.

One type is the production data, such as the pressure, the rates, the WOR, the GOR, and

the logging interpolations. The other type is the facies observation data from cores, which is

regarded as hard data. The process of optimizing the model to match the production data is

pretty much similar with common automatic history matching problems. The hard data in

our problem, however, is not the same type as the model parameters. The hard data are the
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Figure 7.16: Flow chart for the automatic history matching process.
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facies observations, and the underlying model parameters Z1 and Z2 have to be constrained

to the facies observations while matching the production data.

There are two aspects to consider on matching the facies observations. One is in gener-

ating initial models, which have been discussed in one of the previous sections. The other is

in maintaining the facies type at observation locations in the process of optimization.

In line search for the optimized step size, we take one Newton-Raphson iteration as:

α1 = −(∇O(mk))
T dk

dT
k H(mk)dk

, (7.27)

where the computation of the denominator dT
k H(mk)dk requires the term Gkdk. Gkdk is

computed in this project by finite difference method:

Gdk = ‖dk‖
dO(mk)

dα

≈ ‖dk‖
O(mk + εdk)−O(mk)

ε‖dk‖

=
O(mk + εdk)−O(mk)

ε
, (7.28)

where ε is a small constant chosen based on the infinite norm of dk:

ε =
10−3

‖dk‖∞
. (7.29)

The model mk + εdk may not match the facies observation, which makes it meaningless and

impractical to compute the objective function knowing it will be discarded. Therefore we

first check the facies mismatch for the model mk + εdk, if it is non-zero, then the ε is cut

back: ε = ε/10, otherwise, the model is put into the simulator to compute the objective

function O(mk + εdk).

After the step size is computed from the line search, again we check the facies mismatch for

the model mk +α1dk. If it is non-zero, then α1 = α1/10, otherwise, the new model mk +α1dk

is put into the simulator to compute the objective function O(mk + α1dk). The procedure

for checking facies mismatch is much efficient than running the reservoir simulation.

7.7 A Case Study

This truncated pluri-gaussian simulation scheme was tested on a synthetic 2-D field history

matching problem with three facies on 128 by 128 gridblocks. Both Gaussian fields are

assigned Gaussian type covariance and have the same range of 30% of the field width. Three
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index Facies 1 Facies 2 Facies 3

Litho-type dolomite shale sand

Permeability (md) 74 6 372

Porosity 0.18 0.146 0.25

Table 7.3: Properties for each of the litho-facies in the synthetic problem.

Well name Well 1 Well 2 Well 3 Well 4 Well 5

Well type producer producer producer producer injector

Well location (30,30) (30,90) (100,30) (100,100) (65,65)

Facies type 1 2 1 3 3

Constant rate 2000 250 2000 2000 4000

(STB/day)

Table 7.4: Production conditions for all five wells in the field.

lithofacies, dolomite shale and sand, distribute in the field and have very distinct properties.

Table 7.3 lists the permeability and porosity values for each of the facies types. Table 7.4

describes the production conditions for all five wells in this field. In Fig. 7.17, the true facies

field is shown with well locations. The darkest area represents facies 1, light grey area for

facies 2 and white area for facies 3. The draw-down test at the four producing wells lasted

three days and 20 bottom hole pressure data were collected from each well. Besides the

bottom hole pressure data, we also assume the facies at well locations are observed.

In this problem, the total number of pressure data is 100, and the total number of model

parameters is 73734. The number of model parameters is more than twice the number of

Figure 7.17: The “true” facies map with well locations.
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Figure 7.18: The initial facies map and the final facies map after convergence. The objective

function reduced to 1% of the original objective function at the final model.

gridlocks because the moving average method required a margin of Z1 and Z2 fields outside of

the facies grid. The width of the margins is determined by the range of the correlation of Y1

and Y2. For such a large scale problem, we chose the adjoint method to compute the gradient

of pressure mismatch with respect to the model parameters Z1 and Z2. The limited memory

BFGS method (Nocedal, 1980) (LBFGS) is a quasi-Newton method used in computing the

search direction. LBFGS method was found to be the most efficient minimization method

for automatic history matching in terms of saving computational time and memory (Zhang

and Reynolds, 2002a).

An initial model has been generated matching the regions of facies observations. The

initial facies map is shown on the left of Fig. 7.18. After 13 LBFGS iterations, the objective

function reduced to 1% of the initial value. The facies map for the converged model is shown

on the right of Fig. 7.18. The production data is from the true case shown in Fig. 7.8.

The intermediate results for computing the gradient of the squared data mismatch Od

with respect to model parameters Z1 and Z2 are shown in Fig. 7.19. The gradient of the

squared data mismatch with respect to the permeability and the porosity fields are computed

from the adjoint code of Li (2001). Then chain rule is applied to compute the gradient of the

squared data mismatch with respect to each of the Gaussian fields. As well 4 at the upper

right corner is surrounded by facies 3, which has very high permeability, the sensitivity of

rock properties to production data is relatively small.

The final matching of production data for each well is shown in Fig. 7.20. The production

data for well 2 has the best matching, mostly because the gradient is large at that low

permeability region. The final simulated data from well 4 is further away from the observation

data, in comparison with the simulated data from the initial model. The reason might be

that the gradient around well 4 is relatively small than those around other wells, thus the
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Figure 7.19: The gradient of the objective function with respect to intermediate parameters.

The first row are output from the normal adjoint computation. The second row is the

gradient of the objective function with respect to each of the two Gaussian fields Y1 and Y2.
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facies modification close to well 4 is dominated by the gradients from other wells. If the

objective function can be further reduced, the gradients from the data mismatch at well 4

will finally dominate and the facies can be improved around well 4 towards reductions of

data mismatch of well 4.
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Figure 7.20: Comparison of the production data from the initial and the final model with

the observation data.
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Chapter 8

EXPERIMENTAL

Experimental work is not applicable to the research tasks and goals of this project. Conse-

quently, no experimental work has been done.
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Chapter 9

TECHNOLOGY TRANSFER

Our state of knowledge on the integration of seismic and production data has been con-

siderably enhanced by the research results obtained during this project. Many of these

achievements have been described in technical papers. The list of papers given below are

based entirely or partially on results obtained from this research project.

9.1 Technical Papers

• Y. Abacioglu, D. S. Oliver, and A. C. Reynolds: “Efficient history-matching using

subspace vectors,” Computational Geosciences, 5(2)(2001), 151–172.

• F. Zhang and A. C. Reynolds: “Optimization algorithms for automatic history match-

ing of production data,” Proceedings of 8th European Conference on the Mathematics

of Oil Recovery (2002), 10 pages.

• Ruijian Li, A. C. Reynolds, and D. S. Oliver: “Sensitivity coefficients for three-phase

flow history matching,” J. Canadian Pet. Tech., 42(4) (2003) 70–77.

• F. Zhang , J. A. Skjervheim, A. C. Reynolds and D. S. Oliver: “Automatic history

matching in a Bayesian framework: example applications,” SPE-84461, Proceedings of

the 2003 SPE Annual Technical Conference and Exhibition, 13 pages.

• N. Liu and D. S. Oliver: “Evaluation of uncertainty assessment methods, Soc. Petrol.

Eng. J., 8(2), 188–195, 2003.

• R. Li, A. C. Reynolds, and D. S. Oliver: “History matching of three-phase flow pro-

duction data, Soc. Petrol. Eng. J., 8(4), 328–340, 2003.
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• A. C. Reynolds, Ruijian Li and D. S. Oliver, “Simultaneous estimation of absolute and

relative permeability by automatic history matching of three-phase flow production

data,” J. Canadian Pet. Tech., 43(3) (2004) 37–46.

• N. Liu and D. S. Oliver: “Automatic History Matching of Geologic Facies, Soc. Petrol.

Eng. J., 8(2), 188–195, 2004.

• N. Liu and D. S. Oliver: “Experimental assessment of gradual deformation method,

Mathematical Geology, 36(1), 65–77, 2004.

• G. Gao and A. C. Reynolds: “An improved implementation of the LBFGS algorithm for

automatic history matching,” paper SPE-90058, Proceedings of the 2004 SPE Annual

Technical Conference and Exhibition, 18 pages.

• G. Gao, M. Zafari, and A. C. Reynolds: “The Tengiz field history matching problem re-

visited,” paper SPE-90896, Proceedings of the 2004 SPE Annual Technical Conference

and Exhibition, 15 pages.

• G. Gao, M. Zafari, and A. C. Reynolds: “Quantifying uncertainty for the PUNQ-

S3 problem in a Bayesian setting with RML and EnKF, SPE-93324,” accepted for

presentation at the 2005 SPE Reservoir Simulation Symposium.

• Yannong Dong and Dean S. Oliver: ”Quantitative Use of 4D Seismic Data for Reservoir

Description,” SPE Journal, 10(1), March 2005.

9.2 Ph.D. Dissertations

Several graduate students have completed or are expected to complete their Ph.D. degrees

based on research done under the auspices of this DOE project. Those who have completed

together with their date of completion and current company affiliation follow:

• Yafes Abacioglu, “The Use of Subspace Methods for Efficient Conditioning of Reservoir

Models to Production Data,” Ph.D. dissertation, University of Tulsa (2001) BP.

• Ruijian Li, “Conditioning Geostatistical Models to Three-Dimensional Three-Phase

Flow Production Data by Automatic History Matching,” Ph.D. dissertation, University

of Tulsa (2001) Shell International Exploration and Production Inc.

• Fengjun Zhang, “Automatic History Matching of Production Data for Large Scale

Problems,” Ph.D. dissertation, University of Tulsa (2002) ChevronTexaco.

195



Reynolds & Oliver DE-FC26-00BC15309 December 15, 2004

The Ph.D. research of Ning Liu (University of Oklahoma), Yannong Dong (University of

Oklahoma) and Guohua Gao (University of Tulsa) has also been partially supported by this

project. All three are expected to receive their Ph.D. degrees in 2005.
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Chapter 10

CONCLUSIONS

The history matching algorithms and software developed in this project were shown to be

efficient at providing realistic maps of reservoir properties for simulation models. The reser-

voir properties honor both static and dynamic data, while maintaining geologic plausibility,

even when the geologic model is for distinct facies.

As illustrated by our consideration of the Tengiz field example, the limited memory

BFGS provides a feasible algorithm for realistic history matching problems. This example,

illustrates, however, that when data are inconsistent, even a robust optimization algorithm

can yield unrealistic estimates of rock property fields.

The constrained limited memory BFGS algorithm based on a log-transformation of model

parameters can be used to alleviate undershooting and overshooting problems when estimat-

ing rock property fields by history matching production data.

The limited memory BFGS algorithm was effective for history matching changes in acous-

tic impedance data for a synthetic solution-gas drive reservoir based on an example from the

middle east. Results obtained using a combination of seismic and production data were more

accurate than those obtained from either seismic or production data alone. When applied

to real field data, uncertainty in the rock physics model and in the magnitude of the noise

in the data made the problem more difficult, but reasonable estimates were still obtainable.

In many reservoirs, knowledge of the location of geologic facies and their boundaries are

critical to the problem of prediction of production. We have completed the early investigation

of the problem of estimating geostatistical parameters for a truncated plurigaussian model,

that will make it honor a training image and found that the geostatistical parameters that

define a particular geologic traning image are poorly constrained by the image; in other

words, many different sets of parameters such as varigram range and orientation will give the

same training image. We have also demonstrated the feasibility of automatically adjusting
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the locations of the boundaries of geologic facies to honor production data.

We have shown that it is feasible to construct reasonable estimates or realizations of the

relative permeability curves and log-permeability fields by history matching production data

obtained under three-phase flow conditions. The results assume that a prior model is avail-

able for absolute permeability and the parameters that characterize the relative permeability

functions. Although the results indicate that reasonably good estimates of model parame-

ters may be obtainable by history matching only pressure data, history matching pressure,

gas-oil ratio and water-oil ratio data together gives better results.
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